
petar vukmirović
implementation of higher-order superposition

VRIJE UNIVERSITEIT

Implementation of Higher-Order Superposition

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. J.J.G. Geurts,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de Faculteit der Bètawetenschappen
op dinsdag 18 oktober 2022 om 13.45 uur
in een bijeenkomst van de universiteit,

De Boelelaan 1105

door
Petar Vukmirović

geboren te Belgrado, Servië

promotor: prof.dr. W. J. Fokkink

copromotoren: dr. J. C. Blanchette
prof.dr. S. Schulz

promotiecommissie: prof.dr. M. Hoogendoorn
dr. K. Korovin
dr. R. Piskac
dr. A. Steen
dr. M. Suda
prof.dr. G. Sutcliffe

iii

The work in the thesis has been carried out under the auspices of the research school IPA
(Institute for Programming research and Algorithmics).

Keywords: automatic theorem proving, higher-order logic, unification
Printed by: Groenprint.nl
Cover: MarinaAbramović, Rhythm 10 (TheBiography), Cibachrome Print, 1997,

© Marina Abramović, Courtesy of the Marina Abramović Archives
Style: TU Delft House Style, with modifications by Moritz Beller

https://github.com/Inventitech/phd-thesis-template

The author set this thesis in LATEX using the Libertinus Serif, Inter and Inconsolata fonts.

https://github.com/Inventitech/phd-thesis-template

v

Contents

Summary ix

Samenvatting xi

Preface xiii

1 Introduction 1
1.1 Contributions . 4
1.2 Thesis Structure and Publications . 5
1.3 Related Work . 7

2 Preliminaries 9
2.1 Propositional Logic . 10
2.2 First-Order Logic . 10
2.3 Higher-Order Logic . 11
2.4 Clausal Forms . 13
2.5 Superposition . 13

2.5.1 Term Order and Selection . 14
2.5.2 Unification . 14
2.5.3 Inference Rules . 15
2.5.4 The Redundancy Criterion and Simplification Rules 16
2.5.5 The Saturation Procedure . 17
2.5.6 Higher-Order Superposition Calculi. 17
2.5.7 Theorem Provers . 17

3 Extending a Brainiac Prover to Lambda-Free Higher-Order Logic 19
3.1 Introduction. 20
3.2 Logic . 21
3.3 Types and Terms . 22
3.4 Unification and Matching . 24

3.4.1 Unification . 24
3.4.2 Matching . 28

3.5 Indexing Data Structures . 29
3.5.1 Discrimination Trees . 29
3.5.2 Fingerprint Indices . 37

3.6 Inference Rules . 40
3.7 Heuristics . 42
3.8 Preprocessing. 45
3.9 Evaluation . 47
3.10 Discussion and Related Work . 51
3.11 Conclusion . 52

vi Contents

4 Efficient Full Higher-Order Unification 55
4.1 Introduction. 56
4.2 Background . 57
4.3 The Unification Procedure . 58
4.4 Proof of Completeness . 65
4.5 A New Decidable Fragment . 72
4.6 An Extension of Fingerprint Indexing . 81
4.7 Implementation . 83
4.8 Evaluation . 84
4.9 Discussion and Related Work . 86
4.10 Conclusion . 87

5 Boolean Reasoning in a Higher-Order Superposition Prover 89
5.1 Introduction. 90
5.2 Background . 91
5.3 The Native Approach . 92

5.3.1 Support for Booleans in Zipperposition 92
5.3.2 Core Rules . 92
5.3.3 Higher-Order Considerations . 94
5.3.4 Additional Rules . 97

5.4 Alternative Approaches . 100
5.5 Examples . 100
5.6 Evaluation . 102
5.7 Discussion . 104
5.8 Conclusion . 105

6 Making Higher-Order SuperpositionWork 107
6.1 Introduction. 108
6.2 Background and Setting . 109
6.3 Preprocessing Higher-Order Problems . 110
6.4 Reasoning about Formulas . 112
6.5 Exploring Boolean Selection Functions . 115
6.6 Enumerating Infinitely Branching Inferences 118
6.7 Controlling Prolific Rules . 123
6.8 Controlling the Use of Backends . 126
6.9 Comparison with Other Provers . 128
6.10 Discussion and Conclusion. 129

7 Extending a Brainiac Prover to Higher-Order Logic 131
7.1 Introduction and Background . 132
7.2 Terms . 133
7.3 Unification, Matching, and Term Indexing 136

7.3.1 The Unification Procedure . 136
7.3.2 Matching . 139
7.3.3 Indexing . 139

Contents vii

7.4 Preprocessing, Calculus, and Extensions 141
7.5 Evaluation . 143
7.6 Discussion and Related Work . 145
7.7 Conclusion . 146

8 SAT-Inspired Eliminations for Superposition 147
8.1 Introduction. 148
8.2 Preliminaries . 148
8.3 Hidden-Literal-Based Elimination. 149
8.4 Predicate Elimination . 153

8.4.1 Singular Predicates . 153
8.4.2 Defined Predicates . 154
8.4.3 Refutational Completeness . 157

8.5 Satisfiability by Clause Elimination . 162
8.6 Implementation . 165
8.7 Evaluation . 168
8.8 Discussion and Related Work . 171
8.9 Conclusion . 171

9 Conclusion and FutureWork 173

Bibliography 179

ix

Summary

In the last decades, proof assistants have been immeasurably useful in formally proving
validity of hard mathematical theories and correctness of safety-critical software. Using
these tools one can formally describe a problem and produce machine-checkable proofs
for statements about it. To make the checking phase efficient and trustworthy, proof steps
need to be of fine granularity. As a consequence, seemingly simple statements must be
proven in minute detail, making the use of proof assistants very tedious.

In an attempt to automate significant parts of this proving process, assistants can in-
voke automatic theorem provers to finish the proof. However, most assistants are based
on higher-order logic, while most automatic theorem provers are based on first-order logic.
Thismeans that the two systemsmust communicate through translations, which obfuscate
the conjecture being proved and likely make proving the conjecture more difficult.

In this thesis, we try to bridge this translation gap. We start from E, one of the best
first-order proof assistants backends, based on the superposition calculus, and gradually
extend it to higher-order logic. As this approach is large in scope, we split it into three
parts.

The first part extends E to support a fragment of higher-order logic devoid of 𝜆-abstra-
ction, yielding a prover called Ehoh. Despite this extension being small in scope, Ehoh
shows a stronger performance on proof assistant benchmarks than E.

The second part concerns adding support for 𝜆-abstraction. The most important chal-
lenge we faced during this extension is that of higher-order unification. At the time we
started, the state-of-the-art procedure for full higher-order unification was the one devel-
oped in 1970s. We designed a new procedure inspired by this one that enumerates fewer
redundant unifiers, has many modern optimizations built in, and can easily be customized
to trade its completeness for performance. It is implemented in a prototype prover called
Zipperposition, a less efficient but more easily extendible prover compared to E. Our eval-
uation shows that our procedure substantially improves on the state of the art.

The last part concerns adding native support for Boolean terms. For this part we took
inspiration from traditional automatic higher-order provers, based on tableaux. We fitted
those techniques in the superposition context and implemented them in Zipperposition.
Theymade Zipperposition the best prover in the higher-order division of the annual CASC
theorem prover competition for two consecutive years.

After testing out our ideas in Zipperposition, we decided to go back to Ehoh and extend
it to full higher-order logic, obtaining a prover called 𝜆E. We chose the most successful ap-
proaches implemented in Zipperposition that can be ported easily to 𝜆E. The results were
once again positive: Our evaluation shows that 𝜆E is the best prover on proof assistant
benchmarks, and second only to Zipperposition on a standard benchmark set.

We took our idea of porting techniques from weaker to stronger logics one step back:
We explored SAT simplification techniques that can be implemented in the superposition

x Summary

context. We discovered that while some of them can be used during proving, most of them
work best as preprocessors.

In conclusion, the work described in this thesis shows that first- and higher-order pro-
vers are much more alike than previously thought. Furthermore, we showed that through
carefully designed and tuned extension, a first-order prover can become an award-winning
higher-order prover.

xi

Samenvatting

In de afgelopen decennia zijn bewijsassistenten bijzonder nuttig gebleken in het formeel
bewijzen van de validiteit van complexewiskundige theorieën zowel als de correctheid van
veiligheidskritieke software. Met behulp van deze tools kan men een probleem formeel
beschrijven en machinaal controleerbare bewijzen voor uitspraken hierover produceren.
Om de controle-fase efficiënt en betrouwbaar te maken, dienen bewijsstappen van een
zeer fijne granulariteit te zijn. Als gevolg hiervan moeten op het eerste gezicht triviale
feiten in uiterst precies detail bewezen worden, wat het werken met bewijsassistenten
buitengewoon omslachtig maakt.

In een poging om belangrijke delen van dit bewijsproces te automatiseren, kunnen be-
wijsassistenten automatische bewijzers aanroepen om een bewijs af te maken. De meeste
bewijsassistenten zijn echter op hogere-orde logica gebaseerd, terwijl de meeste automa-
tische bewijzers op eerste-orde logica gestoeld zijn. Dit betekent dat de twee systemen
moeten communiceren door vertalingen, die het probleem dat wordt bewezen vertroebe-
len en het bewijzen ervan bemoeilijken.

In dit proefschrift proberen we deze vertaalkloof te overbruggen. We beginnen bij E,
een van de beste eerste-orde bewijsassistenten backends, gebaseerd op de superpositie cal-
culus, en we breiden hem geleidelijk uit tot logica’s van hogere orde. Omdat deze aanpak
een omvangrijke reikwijdte heeft, splitsen we hem in drie delen.

Het eerste deel breidt E uit om een fragment van hogere-orde logica te ondersteunen
zonder 𝜆-abstractie, wat een bewijzer oplevert die Ehoh heet. Alhoewel deze uitbreiding
klein van omvang is, laat Ehoh betere prestaties zien op benchmarks voor bewijsassisten-
ten dan E.

Het tweede deel betreft het toevoegen van ondersteuning voor 𝜆-abstractie. De be-
langrijkste uitdaging waarmee we tijdens deze uitbreiding werden geconfronteerd is die
van hogere-orde unificatie. Op het moment dat we begonnen was de state-of-the-art pro-
cedure voor volledige hogere-orde unificatie in de jaren zeventig ontwikkeld. We ont-
wierpen hierop geïnspireerd een procedure die minder redundante unifiers vindt, waarbij
ook veel moderne optimalisaties zijn ingebouwd. Hij kan verder eenvoudig worden aan-
gepast om niet alle unifiers te vinden, maar sneller te zijn. Hij is geïmplementeerd in
een prototype prover genaamd Zipperposition, een minder efficiënte maar gemakkelijker
uitbreidbare prover, vergeleken met E. Uit onze evaluatie blijkt dat onze procedure een
aanzienlijk verbetering oplevert in prestaties.

Het laatste deel betreft het toevoegen van bestaande ondersteuning voor Boolse ter-
men. Voor dit deel hebben we ons laten inspireren door traditionele automatische hogere-
orde bewijzers, gebaseerd op tableaus. Die technieken hebben we in de superpositie con-
text toegepast en in Zipperposition geïmplementeerd. Dit maakte Zipperposition in twee
opvolgende jaren tot de beste bewijzer in de hogere-orde divisie van de jaarlijkse CASC
automatische bewijzers competitie.

xii Samenvatting

Na het testen van onze ideeën in Zipperposition, besloten we terug te gaan naar Ehoh
en die uit te breiden tot volledige logica van hogere orde. Dit heeft geleid tot een bewijzer
genaamd 𝜆E. We hebben hiervoor de meest succesvolle methoden van Zipperposition ge-
kozen die gemakkelijk kunnen worden overgezet naar 𝜆E. De resultaten waren wederom
positief: Onze evaluatie toont aan dat 𝜆E de beste prover is op een benchmark voor be-
wijsassistenten, en tweede na Zipperposition op een standaard benchmark verzameling.

We hebben vervolgens een stap terug gezet bij onze intentie om technieken van zwak-
kere naar sterkere logica’s over te hevelen: We onderzochten SAT-vereenvoudigingstech-
nieken die kunnen worden geïmplementeerd in de superpositie context. We ontdekten
dat alhoewel sommige ervan kunnen worden gebruikt tijdens het bewijzen, de meeste het
beste werken als preprocessors.

Concluderend laat het werk beschreven in dit proefschrift zien dat eerste- en hogere-
orde bewijzers veel meer op elkaar lijken dan eerder werd gedacht. Verder hebben we
laten zien dat door een zorgvuldig ontworpen en afgestemde uitbreiding, een eerste-orde
bewijzer een bekroonde bewijzer voor hogere orde kan worden.

xiii

Preface

When I downloaded the LATEX template to write this thesis, the following sentence was
present as a placeholder:

Without a doubt, the acknowledgments are the most widely and most eagerly
read part of any thesis.

I do not know if that is true in general, but I have to admit I am guilty of spending quite
some time reading acknowledgments. I find that the reason why we spend so much time
reading acknowledgments is that we want to peek behind the rigorous, formal shape that
a PhD thesis is required to take. We also want to see what PhD candidates have to say
about their personal experiences of finishing a PhD.

After reading many preface or acknowledgments chapters I realized that there is a
discrepancy between what research shows candidate’s experience of finishing a PhD is
and what is actually written in these parts of theses. An article by Levecque et al. [104]
states that one in two PhD students experiences psychological distress, while one in three
is at risk of a common psychiatric disorder. In light of this fact, I want to write this chapter
not only to the people whose help and work indebted me, but also to (future) PhD students
that, after looking up a detail in this thesis, voyeuristically read this chapter (like I didmany
times for other theses).

In my first year of PhD, I was overwhelmed with fear and doubts. Did I make the right
choice by starting a PhD? Am I performing up to expectations? How many papers should
I publish? Should I read more papers? Did I actually learn anything? I could go on an on
like this.

The fact that I was surrounded by very successful postdocs and PhD students in later
years of their studies made me feel like I was the only one having this problem. To the
students reading this chapter, I would very much like to assure you that you are not.

What helped me get out of the self-doubting loop was actually taking action. From the
simplest ones, like saying “I don’t understand” out loud instead of silently nodding when
I had trouble following scientific discussion, to the ones with more impact on my career
like actively looking for projects I could join while I did not have much work on my plate.
As the years went on I felt that I could more openly talk about my insecurities and I found
out that many people in my situation have them as well.

What made my PhD journey more enjoyable are undoubtedly the people I worked
with. I want to thank the whole Theoretical Computer Science group at the VU which
was there with me from the early days of my master studies. They helped me organize my
master programme so that I follow more theory courses which most likely led me to start
an academic career. I also want to thank other postdocs and PhDs that studied during my
PhD or are still studying. Most notably, I would like to thank Alexander Bentkamp, one of
the most gifted mathematicians I know. I coauthored many of my papers with him, each
of which was a pleasure to work on. I would also like to thank all of my collaborators and

xiv Preface

people that suggested improvements to the articles I wrote. Notably, I owe debt of thanks
to the committee members who carefully read this thesis and contributed to it by their
helpful comments.

I want to thank my daily supervisor, Jasmin Blanchette. He always says that the main
product of a PhD is not a thesis but the person you come out as after four years. With his
guidance, I learned to approach things more rigorously, slower, and with more attention.
He also helped me tremendously with my writing and presentation skills. Even though
he tried very hard, he did not teach me to use articles (i.e., English articles “the”, “a”, or
“an”) though, and capitulated by adding them to many of the articles I wrote.

My other two supervisors also helped me greatly. Wan Fokkink read the thesis very
carefully and provided very valuable comments. For the last four years he made my PhD
a smooth sail by solving all the administrative issues on time and provided a very nice
work environment. Stephan Schulz is a real programming and logic wizard. His deep
understanding of all things superposition and low-level Linux programming helped me
not only with my PhD, but I also learned a lot of new skills that are undoubtedly useful
for my future career.

Predrag Janičić, my professor from University of Belgrade who inspired me to deepen
my knowledge in various areas of computer science, suggested many improvements to
the text of this thesis. I thank him as well.

Lastly, I would like to thank Martijn. He was besides me for the last four years and
helped me overcome many of the doubts and issues I mentioned. He also always patiently
waits until my medication or second glass of Grüner Veltliner kicks in (not at the same
time). I also want to thank Jelisaveta and Tara, which sometimes had to deal withmewhen
medication or wine did not kick in. All my other friends, in Serbia or the Netherlands,
thank you for your support.

Petar
Amsterdam, April 2022

1

1

1
Introduction

Half sleeping, half playing Fruit Ninja onmy smartphone at one of the philosophy lectures
in my high school I heard my professor exclaim with excitement: “Mathematical truth is
the highest form of truth!”. Unbothered and uninterested, I continued playing Fruit Ninja.

Many years later I started studying various formal methods in computer science. There
I learned the value of formal, mathematical language and finally understood it. Not only
does using a rigorous mathematical language avoid the ambiguity of the natural one, it
allows us to use the formal rules of reasoning to make conclusions from initial premises
in a trustworthy manner.

Though the interest for rigorous and formal reasoning dates back to Aristotle, it inten-
sified at the end of 19th and the beginning of 20th century [62]. Researchers in that time
were mostly interested in finding a formal language that is expressive enough to describe
manymathematical theories, yet intuitive and understandable enough to allow reasonably
simple formal reasoning. First-order logic became a commonly used system that satisfies
both requirements. This formalism not only allows one to model simple logical relations
such as “if it rains, the road is muddy” (or formally rains→→→ muddy), but also to quantify
over objects as in “all people are mortal” (∀∀∀𝑥.human(𝑥)→→→ mortal(𝑥)).
AutomaticTheorem Proving The initial study of first-order logic and the rules to rea-
son about statements in it was prolific. In 1930 Gödel [72] showed that there is a system
of inference rules (calculus) such that for any valid statement (i.e., a theorem) a proof can
be constructed in this system. Around the same time, the first computers were leaving the
imagination of the engineers and began automating many complicated processes. Natu-
rally, the question as to whether a computer can decide if a first-order statement is valid
arose. Church [47] and Turing [164] answered this question negatively in 1936.

Despite this negative result, the prospect of automatically proving theorems of first-
order logic remained too enticing. In 1960, Davis and Putnam [52] described a procedure
for checking validity of a first-order formula. This procedure terminated only on valid
formulas, as Church and Turing proved no procedure can check validity of an arbitrary
(possibly invalid) formula in finite time. Even though it was efficient enough to prove only
simple formulas, it was an impressive achievement for the time.

1

2 Introduction

A bigger breakthrough happened in 1965 when Robinson introduced a calculus that
would shape the future of automatic reasoning — the resolution calculus [142]. Consisting
of a single inference rule it was simple and elegant. It was also complete: each theorem
could be proven using this system. Furthermore, it was less explosive than Davis and
Putnam’s algorithm since it provided better guidance for search space exploration.

Since its introduction, resolution was improved in many ways. Strategies and heuris-
tics [175] to curb the explosion of the search space were introduced, as well as complete,
but less explosive variants of the calculus [44]. Despite this progress, reasoning about
equality of objects was still hard for resolution. Even though some improvements, like
paramodulation calculus [123], improved this situation, reasoning with equality remained
impractical. This changed with introduction of superposition [7] in the early 1990s.

Superposition is a complete calculus for first-order logic loosely based on resolution,
featuring support for equality on the calculus level. This support is further optimized
by use of various heuristics built to help prune the search space. Thanks to efficient im-
plementation, this calculus was used to prove long-standing open problem known as the
Robbins conjecture [114]. Provers based on this calculus have been winning the first-order
division of the CASC theorem proving competition since its inception in the 1990s [163].

Even though the successes of proving the Robbins conjecture showed that it is possible,
automatically proving hardmathematical problems is still out of reach for theoremprovers.
However, there are other ways in which humans and computers can work together to
construct formal proofs.

Proof Assistants and Hammers Proof assistants (also called interactive theorem pro-
vers) are programs which allow users to describe a theory formally and to write proofs
of the statements about this theory using inference rules of the proof assistant. These
programs can then check if the given proof is correct. As their core is usually small and
well-tested, proofs that pass the checking phase are considered trustworthy.

Proof assistants were essential in proving very complex mathematical theorems in a
trustworthy manner. For example, the four-color theorem [71] and the Kepler conjecture
[73] were proven inside proof assistants, ending the need to trust hundreds of pages of
mathematical proofs. Proof assistants are also used to show correctness of complex soft-
ware such as compilers [103] and operating systems kernels [94]. This verified software
can be used in safety-critical scenarios such as nuclear plants and autonomous vehicles.

The proofs need to be spelled out in minute detail to be accepted by a proof assistant.
Even though many proof assistants offer some sort of automation, seemingly simple state-
ments cannot be automatically proved. This is one of the reasons why large verification
projects can take years to finish. Thus, providing some level of proof automation can
substantially increase productivity of users of proof assistants.

Integrating proof automation directly into the proof assistant is not an easy task. Most
proof assistants are based on variants of higher-order logic, a logic expressive enough to
describe complex mathematical theories out of reach for first-order logic. However, it is
harder to automate as in general it does not even allow complete proof calculi. To provide
some level of automation, proof assistant developers use the efficient first-order provers as
follows. First, the proof goal is translated from higher-order to first-order logic. Then the
first-order prover is run on the translated problem. If the first-order prover finds the proof,

Introduction

1

3

the proof is reconstructed in the proof assistant. Modern assistants such as Coq [23], HOL
Light [74], and Isabelle [130] implement the approach using the hammers CoqHammer
[51], HOL(y)Hammer [89], and Sledgehammer [34], respectively.

The approach proved useful: on some benchmarks, around 77% of the proof goals can
be discharged automatically using Sledgehammer [30]. However, there is clearly some
untapped potential in the approach as it communicates with automatic theorem provers
through a translation. To bridge this translation gap, an attempt was made to use higher-
order automatic theorem provers instead of first-order ones [156]. This proved unfruitful
as state-of-the-art higher-order theorem provers at the time of this attempt were primarily
designed for small problems requiring complex higher-order reasoning. On the other hand,
problems coming from hammers consist of mostly first-order formulas, are rather large,
and mostly require simple higher-order proof steps. An example of a problem that is
seemingly simple, but whose translation to first-order logic is out of reach for even the
best of first-order provers is [16]:

(𝑛∑𝑖=1 𝑖2 +2𝑖 + 1) ≈≈≈ (𝑛∑𝑖=1 𝑖2)+ (𝑛∑𝑖=1 2𝑖)+ (𝑛∑𝑖=1 1)
One of the reasons why this problem is hard is that higher-order proof assistants rely on
unnamed functions, called 𝜆-abstractions, to represent variable-binding mathematical op-
erators such as summations, integrals and limits. More precisely, the left-hand side of the
above equation is usually represented as sum(1,𝑛,𝜆𝑖. 𝑖∗𝑖 +2∗𝑖 +1). When translated to first-
order logic, 𝜆-abstractions, which are ubiquitous as all-purpose binders in higher-order
logic, are obfuscated to the point that all but the simplest reasoning about them is out of
reach for first-order provers. However, for higher-order provers the crux of the proof
is matching the axiom ∀∀∀𝑖𝑗𝑓 𝑔.sum(𝑖, 𝑗,𝜆𝑥.𝑓 𝑥 +𝑔 𝑥) ≈≈≈ (sum(𝑖, 𝑗,𝜆𝑥.𝑓 𝑥)+sum(𝑖, 𝑗,𝜆𝑥.𝑔 𝑥))
against the goal. This operation is relatively simple and, in general, much more efficient
than first-order reasoning about translations.

Thus, from the standpoint of proof assistants the ideal automatic theorem prover ful-
fills the following wishlist:

1. Performs as the best first-order provers on first-order problems

2. Scales well with the size of the problem

3. Supports higher-order logic and scales with the amount of higher-order axioms

This brings us to the topic of this thesis: How to develop a prover fulfilling this wishlist?

Our Approach To improve the automatic reasoning for higher-order logic, my col-
leagues and me decided not to start from a blank slate and build a new theorem prover.
Rather, we start from a position of strength—from the state-of-the-art first-order superpo-
sition theorem prover E [147]—and extend it to higher-order logic. In this way, the points
1 and 2 from the above wishlist are already fulfilled, as E is very efficient and deals well
with large problems.

We did not extend E to higher-order logic in one atomic step. Instead, we extended it
by adding support for features of higher-order logic one by one, which gradually increase

1

4 Introduction

its reasoning capabilities. With this gradual approach we made sure that after every exten-
sion, E’s efficiency on first-order problems did not decrease. Thus, while trying to fulfill
the point 3 from the wishlist we made sure that points 1 and 2 were not affected.

We have identified three stops on the road to full higher-order logic. A distinguished
feature of higher-order logic is that it not only supports quantification over objects, but
also over functions that manipulate these objects. Thus, higher-order logic allows us to
make a statement “all functions with arguments 0 and 1 result in 2” (∀∀∀𝑥.𝑥(0,1) ≈ 2). Re-
placing 𝑥 with the addition function (+) is enough to disprove this statement. The first
stop is to extend E to support quantification over functions that are already present in the
original problem.

Higher-order logic also supports expressing functions that are not explicitly present
in the original problem. Suppose we want to prove there is a function that returns 4 when
given 2 and 5 when given 3 (∃∃∃𝑥.𝑥(2) ≈ 4 ∧ 𝑥(3) ≈ 5). An example of such function is the
function that adds 2 to its argument. In higher-order logic such unnamed functions can
be represented using 𝜆-abstractions as 𝜆𝑦.𝑦 +2. This term suffices to prove the original
statement. The second stop is to support automatically synthesizing such functions.

In higher-order logic we can make statements about statements. More precisely, it
treats Boolean terms (formulas) as first-class citizens, enabling us to model some concepts
in a more natural manner. For example, statements such as “what Jasmin says is true” can
be represented naturally as ∀∀∀𝑥.says(jasmin, 𝑥) →→→ 𝑥 . The last stop is to support Boolean
terms as first-class citizens.

1.1 Contributions
The main contribution of this thesis is the extension of two theorem provers, E and Zip-
perposition [48], to full higher-order logic. To extend these provers, we faced many chal-
lenges. Some of them were of engineering nature, some of them were algorithmic, while
others concerned fine-tuning the heuristics to optimize the performance. We discuss those
challenges in more detail.

First, we implemented the complete superposition calculus for 𝜆-free higher-order
logic [15] in E, obtaining a prover we call Ehoh. The name of the prover is a word play
which combines one of the hit songs by the Teletubbies¹ and the fact that our prover is a
higher-order (HO) extension of E. We had to modify the internal term representation of E
to support 𝜆-free higher-order terms, implement newunification andmatching algorithms,
extend term indexing data structures to work with higher-order terms, and improve the
performance of heuristics on higher-order problems.

Alexander Bentkamp with the help of other colleagues and me developed a complete
superposition calculus for the second phase described above [18]. Due to the complexity
of the calculus and many design decisions that had to be evaluated in a short amount of
time we decided to implement the calculus in Zipperposition [48, 49]. This prover is less
efficient than E, but it is implemented in OCaml and it was designed to make prototyping
ideas and experimenting with calculi much easier. In 2019 we entered the higher-order
division of CASC theoremproving competition [160]with Zipperposition. It finished third,
one percent point behind Leo-III [153] and 12 percent points behind Satallax [39].

¹https://en.wikipedia.org/wiki/Teletubbies_say_%22Eh-oh!%22

https://en.wikipedia.org/wiki/Teletubbies_say_%22Eh-oh!%22

1.2 Thesis Structure and Publications

1

5

Through this experience we identified one of the bottlenecks of Zipperposition: its
unification algorithm. To remove this bottleneck we developed a complete higher-order
unification algorithm that is more efficient and generates fewer redundant unifiers than
the state of the art.

We also noticed that Zipperposition’s support for first-class Booleans was lacking com-
pared to competition. We have closely studied the problems on which Zipperposition fails
but are solved by other provers, and created a set of incomplete rules that enhance Zip-
perposition’s Boolean support. Zipperposition 2 implemented these rules together with
the new unification algorithm. In 2020, Zipperposition 2 won the higher-order division of
CASC [161]. This time it was 20 percent points ahead of the second best prover, Satallax.

Inspired by this success, we implemented the complete superposition calculus for
higher-order logic with Booleans (i.e., the third phase), that was developed by Bentkamp
with the help of other colleagues and me [17]. Developing this calculus helped us un-
derstand in which ways our pragmatic extension was too weak to prove hard theorems
of higher-order logic. We further fine-tuned the heuristics and implemented new ways
to tame the search space explosion. In 2021 we released Zipperposition 2.1 which imple-
mented these new features. It again won CASC, outperforming Zipperposition 2. It was
16 percent points ahead of the runner-up, Vampire 4.5 [100].

Building on all the experience we gathered while working on Zipperposition, we fur-
ther extended Ehoh to full higher-order logic, obtaining a prover called 𝜆E. We again mod-
ified the term representation, implemented new unification and matching algorithms, ex-
tended indexing data structures, and tweaked heuristics. Even though this extension has
a larger scope than the original extension from E to Ehoh, the strong basis that we had
built earlier made it manageable.

A common thread for the extensions of both E and Zipperposition is that we heavily
relied on the availability of established higher-order provers and the TPTP benchmark
set. Whenever we noticed that there were problems E and Zipperposition could not solve,
but other competitive provers could, we looked for an explanation for this issue. This
explanation would usually be in the form of missing inference or heuristic. Thenwewould
try to find more problems that have a similar pattern and see if the developed technique is
useful on them. If so, we would make it part of the portfolio of approaches tried on every
problem. The ideas for our unification procedure (Chapter 4) and the techniques described
in Chapters 5 and 6 were developed in this way.

After spending so much time and energy on developing higher-order provers, we took
a step back and worked on improving first-order provers. As they form the basis of higher-
order reasoning in our approach, this should improve higher-order performance as well.
In particular, we looked at efficient approaches to simplify problems in propositional logic,
which is simpler than first-order logic and even decidable. We lifted some of these propo-
sitional approaches to first-order logic and implemented them in Zipperposition.

1.2 Thesis Structure and Publications
This thesis is cumulative: chapters 3–8 are taken from previous publications (or drafts in
case of Chapter 7) where I was the main author. Use of the publications in this thesis was
authorized by the coauthors.

1

6 Introduction

Chapter 2 introduces the backgroundmaterial necessary for following this thesis, while
Chapter 9 gives a brief summary of the work and describes alleys for future work. The
other six chapters discuss previously described contributions in detail:
Chapter 3 discusses the stepswe have taken to extend first-order prover E to 𝜆-free higher-
order logic, obtaining Ehoh. It is mostly based on the journal publication

1. Petar Vukmirović, Jasmin Blanchette, Simon Cruanes, and Stephan Schulz. Extend-
ing a Brainiac Prover to Lambda-Free Higher-Order Logic. In International Journal
on Software Tools for Technology Transfer. Springer, 2021. Published online only.

while parts of the chapter were previously published in the conference publication
2. Petar Vukmirović, Jasmin Blanchette, Simon Cruanes, and Stephan Schulz. Extend-

ing a Brainiac Prover to Lambda-Free Higher-Order Logic. In Vojnar, T., Zhang, L.
(eds.) TACAS 2019, LNCS 11427, pp. 192–210, Springer, 2019.

Chapter 4 discusses the higher-order unification procedure we designed to be used inside
efficient theorem provers. It is mostly based on the journal publication

3. Petar Vukmirović, Alexander Bentkamp, and Visa Nummelin. Efficient Full Higher-
Order Unification. In Logical Methods in Computer Science 17(4): 18:1–18:31, 2021.

while parts of the chapter were previously published in the conference publication, which
won the best paper by a junior researcher award:

4. Petar Vukmirović, Alexander Bentkamp, and Visa Nummelin. Efficient Full Higher-
Order Unification. In Ariola, Z.M. (ed.) FSCD 2020 LIPIcs 167, pp. 5:1–5:17, Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2020.

Chapter 5 discusses the pragmatic extensions of the complete calculus for superposition
with 𝜆-abstractions to support first-class Booleans. It is based on the publication

5. Petar Vukmirović and Visa Nummelin. Boolean Reasoning in a Higher-Order Su-
perposition Prover. In P. Fontaine, K. Korovin, I.S. Kotsireas, P. Rümmer, S. Tourret
(eds.) PAAR-2020, CEUR Workshop Proceedings, vol. 2752, pp. 148–166. CEUR-
WS.org (2020)

Chapter 6 discusses the approach we took to control the explosion of the search space
inherent to higher-order superposition. It is mostly based on the journal publication

6. Petar Vukmirović, Alexander Bentkamp, Jasmin Blanchette, Simon Cruanes, Visa
Nummelin, and Sophie Tourret. Making Higher-Order SuperpositionWork. In Jour-
nal of Automated Reasoning. Springer, 2022.

while parts of the chapter were previously published in the conference publication, which
won the best paper by a student award:

7. Petar Vukmirović, Alexander Bentkamp, Jasmin Blanchette, Simon Cruanes, Visa
Nummelin, and Sophie Tourret. Making Higher-Order Superposition Work. In
Platzer, A., Sutcliffe, G. (eds.) CADE-28, LNCS 12699, pp. 415–432, Springer, 2021.

Chapter 7 discusses the extension of Ehoh to support full higher-order logic, resulting in𝜆E. It is based on the draft

1.3 Related Work

1

7

8. Petar Vukmirović, Jasmin Blanchette, and Stephan Schulz. Extending a High-Per-
formance Prover to Higher-Order Logic. 2022.

Chapter 8 discusses lifting some of the techniques used to simplify formulas in proposi-
tional logic to first-order logic. It is based on the technical report version of the publication:

9. Petar Vukmirović, Jasmin Blanchette, and Marijn J.H. Heule. SAT-Inspired Elimina-
tions for Superposition. In Piskac, R., Whalen, M. (eds.) FMCAD 2021, pp. 231–240,
IEEE, 2021.

As a PhD candidate, I coauthored the following articles and papers, that are not in-
cluded in this thesis:

10. Martin Desharnais, Petar Vukmirović, Jasmin Blanchette, and Makarius Wenzel.
Seventeen Provers Under the Hammer. Accepted at ITP 2022.

11. Alexander Bentkamp, Jasmin Blanchette, Sophie Tourret, Petar Vukmirović, and
Uwe Waldmann. Superposition with Lambdas. Journal of Automated Reasoning
65(7): 893–940, 2021.

12. Visa Nummelin, Alexander Bentkamp, Sophie Tourret, and Petar Vukmirović. Su-
perposition with First-Class Booleans and Inprocessing Clausification. In Platzer,
A., Sutcliffe, G. (eds.) CADE-28, LNCS 12699, pp. 378–395, Springer, 2021.

13. Alexander Bentkamp, Jasmin Blanchette, Sophie Tourret, and Petar Vukmirović. Su-
perposition for Full Higher-Order Logic. In Platzer, A., Sutcliffe, G. (eds.) CADE-28,
LNCS 12699, pp. 396–412, Springer, 2021.

14. Stephan Schulz, Simon Cruanes, and Petar Vukmirović. Faster, Higher, Stronger: E
2.3. In Fontaine, P. (ed.) CADE-27, LNCS 11716, pp. 495–507, Springer, 2019.

15. Alexander Bentkamp, Jasmin Blanchette, Sophie Tourret, Petar Vukmirović, and
UweWaldmann. Superposition with Lambdas. In Fontaine, P. (ed.) CADE-27, LNCS
11716, pp. 55–73, Springer, 2019.

1.3 RelatedWork
The earliest attempts to automate higher-order logic can be traced back to Robinson, who
provided two approaches. The first one [140] operates directly on higher-order formulas.
The second approach [141] is based on translating higher-order logic to first-order logic
using combinators, similar to the approach taken by hammers. Huet [81] and Andrews [1]
designed calculi that are directly applied to higher-order formulas.

These attempts resulted in early higher-order theorem provers. Andrews and col-
leagues developed TPS [3]: an automatic prover which allows users to specify proof out-
lines, based on expansion proofs. Benzmüller and colleagues developed LEO [19], a prover
based on higher-order resolution which introduced the cooperative paradigm. Provers
implementing this paradigm invoke first-order backends in regular intervals to finish the
proof. The latest iteration in the LEO family of provers is Leo-III [153]. Satallax [39] is
based on higher-order analytic tableaux. Such representations of logical formulas are tree

1

8 Introduction

structures with at each node a subformula of the original formula to be proved or refuted.
Satallax improves on the method by using a SAT solver to close tableau branches. It won
the higher-order division of CASC on eight occasions: in 2011 and every year from 2013
to 2019.

Various researchers also experimented with the idea of extending a first-order prover
to higher-order logic. Beeson [14] implemented second-order unification and added 𝜆-
terms to one of the best first-order provers at the time, Otter [115]. Cruanes extended
Zipperposition [48, 49] with arithmetic, induction, and rudimentary support for higher-
order logic. Bhayat and Reger implemented a complete superposition calculus for higher-
order logic, based on combinators in Vampire [25]. Authors of SMT (satisfiability modulo
theories) solvers followed a similar path: they extended cvc4 [12] and veriT [38] to support
higher-order logic [11].

Higher-order unification is one of the central procedures in a higher-order prover.
Jensen and Pietrzykowski introduced a complete procedure for enumerating elements
unifiers for higher-order terms [86]. Huet noticed that some calculi remain complete if
solving a difficult subproblem of higher-order unification (“flex-flex” pairs) is delayed. He
described a procedure to solve this easier problem in a more efficient way [82]. Dougherty
desgined a procedure to enumerate higher-order unifiers using higher-order combina-
tors [56].

To make unification more efficient, Bhayat and Reger implemented efficient term in-
dexing in their extension of Vampire [25]. Libal and Steen designed efficient term indexing
based on substitution trees [106].

There have been many studies on the performance of algorithms or success rate of
heuristics in first-order theorem proving. For example, Hoder and Voronkov evaluated
different unification algorithms [79], while Reger, Suda, and Voronkov evaluated differ-
ent parameters of a novel prover architecture [136]. Other authors evaluated different
proof search heuristics for superposition provers [70, 78, 148]. Evaluation of many prover
parameters has been done for higher-order provers as well [21, 60, 152, 174].

2

9

2
Preliminaries

In this chapter we lay out the basic prerequisites for the remaining chapters. We begin by
describing the three logics that we work with in this thesis: propositional logic, first-order
logic, and higher-order logic. Then, we explain the clausal structure which is the backbone
of many calculi for automated provers. We finish with the description of the superposition
calculus. As this thesis discusses practical aspects of theorem proving, we define only the
fundamental notions, while more advanced notions are intuitively described with references
to rigorous definitions. The text of this chapter is partly based on the preliminaries sections
of the publications listed in Chapter 1.

2

10 Preliminaries

2.1 Propositional Logic
Atomic formulas (atoms) of propositional logic are propositional variables p,q,… and con-
stants ⊤⊤⊤ and ⊥⊥⊥. More complex formulas are built inductively using logical connectives¬¬¬,∧∧∧,∨∨∨,→→→,↔↔↔: if 𝜙 and 𝜓 are formulas, then ¬¬¬𝜙,𝜙 ∧∧∧𝜓 ,𝜙 ∨∨∨𝜓 ,𝜙 →→→ 𝜓,𝜙 ↔↔↔ 𝜓 are formulas
as well.

To interpret the formulas, propositional variables are assigned 0 (false) or 1 (true), and
constants ⊤⊤⊤ and ⊥⊥⊥ are assigned 1 and 0, respectively; formulas are interpreted using the
rules for each connective [84, Sect. 1.4]. As there are finitely many propositional variables
in a formula, trying all (finitely many) possible variable assignments describes an algo-
rithm to decide satisfiability (existence of satisfiable assignment for a formula) or validity
(if all assignments satisfy the formula).

This simple approach is prohibitively expensive and modern tools that decide the
propositional satisfiability problem (SAT solvers) use more advanced approaches such
as the CDCL calculus [149]. A crucial improvement of this calculus compared to more
naive approaches is that it does not backtrack chronologically when it determines that
the partial model constructed for a set of clauses does not satisfy all clauses. Instead, it
generates a learned clause which explains how this conflicting state was reached, which
enables smarter backtracking. Modern SAT solvers also heavily preprocess the problem
and continue simplifying it during the proving process.

2.2 First-Order Logic
First-order logic increases the expressivity by allowing quantification over objects and has
a more complicated formula structure. There are many flavors of first-order logic, but in
this thesis we consider monomorphic first-order logic with equality.

We distinguish a set of base types 𝑇 which is required to include the Boolean type 𝑜,
and a set of symbols Σ. To each symbol f ∈ Σ a tuple (𝜏1,…,𝜏𝑛, 𝜏),𝑛 ≥ 0 of types is assigned,
written f ∶ (𝜏1,…,𝜏𝑛) → 𝜏 . We say that (𝜏1,…,𝜏𝑛) are argument types, 𝜏 is the return type,
and 𝑛 is the arity of the symbol f. If the return type of f is 𝑜, we call f a predicate symbol,
otherwise we call it a function symbol. Argument types may not be Boolean.

Terms are the basic building blocks of first-order logic, built inductively as follows.
Variables 𝑥,𝑦,…, assigned types 𝜏 ∈ 𝑇 ⧵{𝑜}, are terms. If 𝑡1,… , 𝑡𝑛 are terms of types 𝜏1,…,𝜏𝑛 ,
respectively, and f ∶ (𝜏1,…,𝜏𝑛)→ 𝜏 , then f(𝑡1,… , 𝑡𝑛) is a term of type 𝜏 . If 𝑛 = 0, we drop the
parentheses and write f. We also abbreviate f(𝑡1,… , 𝑡𝑛) to f(𝑡𝑛). Using a similar notation,
we abbreviate a tuple of terms (𝑡1,… , 𝑡𝑛) as (𝑡𝑛) or simply 𝑡𝑛 .

Terms are used to build atoms. An atom is either a term 𝑡 of type 𝑜 (predicate atom)
or an equation 𝑠 ≈ 𝑡 where terms 𝑡 and 𝑠 are of the same type (equational atom). Atoms
are combined using logical connectives to build formulas just like in propositional logic.
Additionally, first-order formulas are built using quantifiers: if 𝜙 is a formula and 𝑥 is a
variable, then ∀∀∀𝑥.𝜙, as well as ∃∃∃𝑥.𝜙 are formulas. Intuitively, the first formula requires that𝜙 holds for every value of 𝑥 , while the second one requires that there is some 𝑥 for which𝜙 holds. As soon as there is a single functional symbol with arity greater than 0, there
are infinitely many terms that can be substituted for a free variable. Furthermore, in first-
order logic, it does not suffice to assign values to variables to determine the truth value of
the formula. It is also necessary to interpret the symbols. Therefore, it is obvious that the

2.3 Higher-Order Logic

2

11

propositional technique for deciding satisfiability does not work in the first-order case.
Even though we do not formally define the semantics of logic, we assume the natural

extensions of domain, valuation, interpretation, andmodel (as defined by Fitting [65]) from
unsorted to many-sorted logic. Themodels we consider are normal, i.e., they interpret ≈ as
an equality relation. Usual notions of (un)satisfiability and (in)validity are assumed. We
write 𝒥 ⊧𝜉 𝑁 to denote that a model 𝒥 satisfies a formula set 𝑁 , for a variable assignment𝜉 . If 𝒥 is a model of 𝑁 (i.e., 𝒥 satisfies it under every variable assignment), we simply
write 𝒥 ⊧ 𝑁 . Overloading notation, we write 𝑀 ⊧ 𝑁 to denote that 𝑀 entails 𝑁 , i.e., that
every model of 𝑀 is a model of 𝑁 .

A position in a term is a tuple of natural numbers, with 𝜀 denoting the empty tuple.
Subterms and positions are inductively defined as follows. The term 𝑡 is a subterm of itself
at position 𝜀. If 𝑠 is a subterm of 𝑡𝑖 at position 𝑝, then 𝑠 is a subterm of f(𝑡𝑛) at position 𝑖.𝑝
(with . denoting prepending operation). A context is a term with zero or more subterms
replaced by a hole !. We write 𝐶[𝑢𝑛] for the term resulting from filling in the holes of
a context 𝐶 with the terms 𝑢𝑛 , from left to right. We say a term is ground if it has no
variables. By 𝑢[𝑠] we denote that 𝑠 is a subterm of 𝑢.

Substitutions 𝜎,𝜚,… are total mappings from variables to terms of the same type. Sub-
stitutions map only finitely many variables to terms other than the variable itself. This is
denoted as {𝑥1 ↦ 𝑡1,…,𝑥𝑛 ↦ 𝑡𝑛}where 𝑥𝑖 are variables that are not mapped to themselves.
Applying a substitution 𝜎 to a term 𝑡 , denoted 𝜎(𝑡), results in replacing all variables of 𝑡
by the corresponding values of the mapping 𝜎 . The composition 𝜚𝜎 of substitutions is
defined by (𝜚𝜎)𝑡 = 𝜚(𝜎(𝑡)). We call a substitution 𝜎 grounding if 𝜎(𝑥) ≠ 𝑥 implies that𝜎(𝑥) is ground.
2.3 Higher-Order Logic
In this thesis we use classic extensional simply typed monomorphic higher-order logic
with the choice operator, but without the description operator, the axiom of infinity, and
the axiom of at least two individuals [20, Sect. 3.5]. This logic corresponds to Henkin’s
extensional type theory. We additionally use some variations of this logic, clearly stating
the differences. Assuming a set of base types 𝑇 and a set of symbols Σ, let us define terms
and types. Types are either base types 𝜏 ∈ 𝑇 , or function types 𝜏 → 𝜐 where both 𝜏 and 𝜐
are types. Each symbol f ∈ Σ is assigned a type.

Terms are defined as free variables 𝐹 ,𝑋 ,…, bound variables 𝑥,𝑦,𝑧,… , or symbols f,g,a,
b… . Furthermore, if 𝑠 and 𝑡 are terms of type 𝜏 →𝜐 and 𝜏 , respectively, then 𝑠 𝑡 is a term of
type 𝜐. Lastly, if 𝑥 is a bound variable of type 𝜏 and 𝑠 is a term of type 𝜐, then 𝜆-abstraction𝜆𝑥. 𝑠 is a term of type 𝜏 → 𝜐. The syntactic distinction between free and bound variables
gives rise to loose bound variables [124], bound variables that appear without an enclosing𝜆 binder (e.g., 𝑦 in 𝜆𝑥. 𝑦 a). Note that there is no requirement that a symbol is not applied
to terms of Boolean type as in first-order logic. Furthermore, all logical connectives are
symbols present in the set Σ. This means that higher-order logic does not distinguish
between terms and formulas. For example, p∧∧∧ q and f (p∧∧∧ q) are well-formed terms of
higher-order logic. For convenience, we still call terms of Boolean type formulas. Our logic
also supports the Hilbert choice operator 𝜀. Intuitively, this operator chooses an arbitrary
value that satisfies a predicate and it is axiomatized as follows: ∀∀∀𝑝. (∃∃∃𝑥.𝑝 𝑥)→→→ 𝑝(𝜀 𝑝).

2

12 Preliminaries

With 𝛼-conversion we assume the rule (𝜆𝑥. 𝑠) ⟶ 𝜆𝑦.{𝑥 ↦ 𝑦}(𝑠) where 𝑦 does not
occur as a loose bound variable in 𝑠 and 𝑦 is not bound in 𝑠. Application of a substi-
tution to a term implicitly 𝛼-renames bound variables to avoid capture. For example,{𝑋 ↦ 𝑥}(𝜆𝑥.𝑋 a) results in 𝜆𝑦.𝑥 a. The 𝛽-reduction rule, roughly speaking, corresponds to
passing arguments in a function call: (𝜆𝑥.𝑠) 𝑡 ⟶ {𝑥 ↦ 𝑡}(𝑠), where the bound variables
in 𝑠 are renamed to avoid capture. Lastly, 𝜂-reduction is defined as 𝜆𝑥. 𝑠 𝑥 ⟶ 𝑠 under the
condition that 𝑥 is not loose bound in 𝑥 . We write 𝑠 ⟷∗𝛼𝛽𝜂 𝑡 if terms 𝑠 and 𝑡 are equal
modulo 𝛼𝛽𝜂-conversion. Terms that are convertible with respect to any of the rules form
equivalence classes. Thus, we also say that 𝛼(𝛽𝜂)-convertible terms are 𝛼(𝛽𝜂)-equivalent.

In practice, many implementations of 𝜆-terms avoid a named representation of bound
variables described above by using a locally nameless representation [45]. In this represen-
tation, free variables retain their names, while abstractions are simply represented by a 𝜆
symbol, without any names. Further, bound variables can be represented using De Bruijn
indices. A bound variable with De Bruijn index i is bound by the 𝑖 +1-th enclosing 𝜆 binder.
For example, the term 𝜆𝑥. f (𝜆𝑦𝑧.g𝑧 𝑥) is represented as 𝜆 f (𝜆𝜆g02). The locally nameless
representation reduces the 𝛼-equivalence test to the syntactic equality test.

As hinted in previous definitions, higher-order substitutions (𝜎,𝜚,…) are functions
from both free and bound variables to terms. A variable 𝐹 is mapped by 𝜎 if 𝜎(𝐹)⟷̸∗𝛼𝛽𝜂 𝐹 .
Substitutions map only finitely many variables. Given a substitution 𝜚, which maps 𝐹 to𝑠, with 𝜚 ⧵ {𝐹 ↦ 𝑠} we denote the substitution that does not map 𝐹 and otherwise coin-
cides with 𝜚. Given substitutions 𝜚 and 𝜎 , mapping disjoint variable sets, we write 𝜚 ∪ 𝜎
to denote 𝜚𝜎 .

We let 𝑠 𝑡𝑛 stand for 𝑠 𝑡1 … 𝑡𝑛 and 𝜆𝑥𝑛. 𝑠 for 𝜆𝑥1.…𝜆𝑥𝑛. 𝑠, omitting the length 𝑛 ≥ 0when
it is not important or it can be inferred. Every 𝛽-reduced term can be written as 𝜆𝑥𝑚.𝑎 𝑡𝑛 ,
where 𝑎 is not an application; we call 𝑎 the head of the term. By convention, 𝑎,𝑏, and 𝜁
denote heads. If 𝑎 is a free variable, we call the term flex; otherwise, the term is rigid.

Deviating from the standard notion of higher-order subterm, we define subterms on𝛽-reduced terms as follows: a term 𝑡 is a subterm of 𝑡 at position 𝜀. If 𝑠 is a subterm of 𝑢𝑖
at position 𝑝, then 𝑠 is a subterm of 𝑎 𝑢𝑛 at position 𝑖.𝑝. If 𝑠 is a subterm of 𝑡 at position 𝑝,
then 𝑠 is a subterm of 𝜆𝑥. 𝑡 at position 1.𝑝. Our definition of subterm gracefully generalizes
the corresponding first-order notion: a is a subterm of fab at position 1, but f and fa are
not subterms of fab. We say a term is ground if it has no free variables, and closed if it
has no loose bound variables.

Throughout this thesis, we consider completeness of higher-order calculi only with
respect to Henkin semantics [20]. Note that no complete, consistent calculus can exist for
higher-order calculi with standard (full) semantics.

Some of the approaches described in this thesis are based on rank-1 polymorphism [31,
88]. This is an extension of simply typed logic which adds type variables to the definition
of types and type arguments to polymorphic constants (Chapter 5). It further requires that
type arguments are instantiated with concrete, non-quantified types. In a clausal structure
it allows (implicit) quantification over types only on top-level and not inside literals.

2.4 Clausal Forms

2

13

2.4 Clausal Forms

The standard resolution and superposition calculi do not work directly on formulas, but
on normal forms, clauses. Thus, the initial problem, expressed as a set of formulas, must be
transformed into a set of clauses. For propositional and first-order logic, there exists such
a transformation that does not affect satisfiability of the problem [126]. In higher-order
logic, formulas are first-class citizens and higher-order calculi can in general work with
the nonnormalized problem, in its original form. However, resolution and superposition-
based higher-order calculi still perform best when the problem is clausified using a trans-
formation similar to the one used in the first-order case. We have analyzed different ap-
proaches to clausification in a higher-order context [17].

An equation 𝑠 ≈ 𝑡 corresponds to an unordered pair of terms. A literal 𝑙 is an equa-
tion 𝑠 ≈ 𝑡 or its negation (disequation) 𝑠 ≉ 𝑡 . A clause 𝐶 is a finite multiset of literals,
interpreted and written disjunctively: 𝑙1 ∨ ⋯ ∨ 𝑙𝑛 . Free variables of clauses are implicitly
universally quantified. Note that clause-level operators (∨,≈,≉) are not typeset in bold to
distinguish them from term-building symbols (∨∨∨,≈≈≈,≉≉≉,∧∧∧,∀∀∀,…) which are typeset in bold. In
standard, non-clausal first-order logic, an atom is either predicate or equational. For uni-
formity, and to stay close to the implementation, we encode predicate atoms as equations
with ⊤⊤⊤. Negative literals are encoded as disequations. For example, even(𝑥) is encoded as
even(𝑥) ≈ ⊤⊤⊤, and ¬even(𝑥) is encoded as even(𝑥) ≉ ⊤⊤⊤. To lighten the notation, we some-
times write the predicate literals in nonencoded form. Applying a substitution to a literal
is reduced to applying it to both sides of the (dis)equation and it is extended pointwise to
clauses. We say 𝜎(𝐶) is a ground instance of 𝐶 if 𝜎(𝐶) has no free variables.

2.5 Superposition

Superposition is one of the most successful calculi for first-order logic with equality. It
owes its success to a careful treatment of equality and built-in heuristics to prune the
search space such as term order and selection functions.

This calculus works on problems in clausified form and proves the problem by refuting
its negation. In practice this means that, to apply superposition to a given problem, we first
must negate its conjecture and clausify the whole problem using some of the clausification
algorithms [126, 137]. The calculus then applies its inference rules to the clauses, adding
results of the inferences to the working set of clauses. As this process is quite prolific, it
also uses an order on terms which gives an indication of a term’s “simplicity” to determine
if some clauses can be simplified or eliminated from the working set. Superposition is
refutationally complete: This means that, if results of all inferences are computed in a
systematic, fair manner, the empty clause (⊥) will eventually be derived for a provable (i.e.,
valid) problem. As first-order logic is undecidable, no guarantees are given for unprovable
(i.e., invalid) problems. Before introducing the rules of the calculus, we provide definitions
of the background concepts.

2

14 Preliminaries

2.5.1 Term Order and Selection
Superposition calculus is parameterized by a term order ≻ with the following properties:
Irreflexive For all terms 𝑠, 𝑠 ⊁ 𝑠
Transitive For all terms 𝑠, 𝑡,𝑢, if 𝑠 ≻ 𝑡 and 𝑡 ≻ 𝑢 then 𝑠 ≻ 𝑢
Subterm property For all terms 𝑠 and contexts 𝐶 , 𝐶[𝑠] ≻ 𝑠
Respects substitutions For all terms 𝑠, 𝑡 and substitutions 𝜎 , 𝑠 ≻ 𝑡 implies 𝜎(𝑠) ≻ 𝜎(𝑡)
Respects contexts For all terms 𝑠, 𝑡 and nonempty contexts 𝐶 , 𝑠 ≻ 𝑡 implies𝐶[𝑠] ≻ 𝐶[𝑡]
Ground total For all distinct ground terms 𝑠 and 𝑡 either 𝑠 ≻ 𝑡 or 𝑡 ≻ 𝑠
Well-founded There are no infinite chains of the form 𝑠1 ≻ 𝑠2 ≻ ⋯

The term order is lifted to literals and clauses using the multiset extension of ≻. The
order is extended to multisets as follows [8, Sect. 2.5]. For two multisets 𝑆1 and 𝑆2, we
write 𝑆1 ≻ 𝑆2 if 𝑆1 ≠ 𝑆2 and whenever 𝑆2(𝑥) > 𝑆1(𝑥) then there is some 𝑦 ≻ 𝑥 such that𝑆1(𝑦) > 𝑆2(𝑦). We use the notation 𝑆(𝑥) to denote the number of occurrences of 𝑥 in 𝑆. To
use the multiset extension, positive literals are represented as {{𝑠}, {𝑡}} and negative ones
as {{𝑠, 𝑡}}, whichmakes the negative literals slightly greater than the positive ones. Clauses
are then represented as multisets of such literals.

Two orders that are commonly used in superposition theorem proving are the Knuth–
Bendix order (KBO) [5, Sect. 5.4.4] and the lexicographic path order (LPO) [5, Sect. 5.4.2].
KBO assigns integer weights to symbols and uses precedence between symbols to break
eventual ties. LPO entirely relies on precedence and inspects term structures more closely
to determine the order.

The literal selection function selects a (multi)subset of literals from a given (multi)set
of literals. Superposition requires that at least one of the selected literals is negative.

2.5.2 Unification
Calculi from the resolution family, including superposition, perform inferences only on
unifiable terms. We say terms 𝑠 and 𝑡 are unifiable if there is a substitution 𝜎 such that𝜎(𝑠) = 𝜎(𝑡); we further say 𝜎 is a unifier. A unification constraint 𝑠 ?= 𝑡 is a pair of two terms
of the same type. We always specify if the constraint should be interpreted as ordered or
unordered. We say a substitution 𝜎 is more general than 𝜚 if there exists a substitution𝜃 such that 𝜚 = 𝜃𝜎 . A most general unifier (MGU) is a unifier 𝜎 , such that for any other
unifier 𝜚, 𝜎 is more general than 𝜚. In first-order logic, the MGU is unique up to variable
renaming. For example, f(𝑋) ?= f(𝑌) yields the MGU {𝑋 ↦ 𝑌} or {𝑌 ↦ 𝑋}. First-order
logic also admits efficient, linear-time algorithms for computing MGUs [79].

In higher-order logic, unification is performed modulo 𝛼𝛽𝜂-equivalence. Under these
conditions, the uniqueness of the MGU is not guaranteed. Consider the constraint 𝑋 (fa) ?=
f (𝑋 a). Any substitution of the form {𝑋 ↦ 𝜆𝑥. f𝑖 𝑥} is a unifier, with f𝑖 𝑥 denoting iterated,𝑖-fold application of f. However, neither of these substitutions is more general than the
other. To generalizeMGUs to higher-order logic, the concept of the complete sets of unifiers
(CSU) was introduced.

A (higher-order) unifier of a multiset of unification constraints 𝐸 is a substitution 𝜎 ,
such that 𝜎(𝑠) ⟷∗𝛼𝛽𝜂 𝜎(𝑡), for all 𝑠 ?= 𝑡 ∈ 𝐸. A complete set of unifiers of 𝐸 is defined as a
set 𝑈 of 𝐸’s unifiers along with a set 𝑉 of auxiliary variables such that no 𝑠 ?= 𝑡 ∈ 𝐸 contains
variables from 𝑉 and for every unifier 𝜌 of 𝐸 there exists a 𝜎 ∈ 𝑈 and a substitution 𝜃 such

2.5 Superposition

2

15

that for all 𝑋 ∉ 𝑉 , 𝜌(𝑋) = 𝜃(𝜎(𝑋)). The MGU, when it exists, corresponds to a one-element
CSU. A unifier of terms 𝑠 and 𝑡 is a unifier of the singleton multiset {𝑠 ?= 𝑡}. There is no
algorithm to decide if two higher-order terms are unifiable, but there exist procedures that
enumerate all elements of the CSU for two terms.

These higher-order concepts gracefully generalize the corresponding first-order ones.
For example, if 𝑠 at 𝑡 are first-order, then there must exist a singleton CSU, i.e., the MGU.

2.5.3 Inference Rules
Before spelling out the inference rules of standard, first-order superposition, let us intro-
duce some helpful notation, following Schulz [143]. With 𝑡|𝑝 we denote the subterm of 𝑡
at position 𝑝 and with 𝑡[𝑝 ← 𝑡′] we denote the term obtained by replacing this subterm
with 𝑡′. Let Sel be a selection function, ≻ a term order, 𝐶 = 𝑙 ∨ 𝐶′ a clause, and 𝜎 a sub-
stitution. We say that 𝜎(𝑙) is eligible for resolution if: (1) nothing is selected by Sel and𝜎(𝑙) is ≻-maximal within the literals in 𝜎(𝐶) or (2) Sel selected some literals and 𝜎(𝑙) is
the maximal within either positive or negative selected literals. We say 𝜎(𝑙) is eligible for
paramodulation if it is positive, nothing is selected, and 𝜎(𝑙) is the maximal literal within
the literals of 𝜎(𝐶). With mgu(𝑠, 𝑡) we denote the MGU of 𝑠 and 𝑡 . Using a horizontal line
to separate premises and the conclusion, the four inference rules of superposition are as
follows:

Equality resolution (ER)𝑠 ≉ 𝑡 ∨ 𝐶
ER𝜎(𝐶) where 𝜎 = mgu(𝑠, 𝑡), and 𝜎(𝑠 ≉ 𝑡) is eligible for

resolution

Equality factoring (EF)𝑠 ≈ 𝑡 ∨ 𝑢 ≈ 𝑣 ∨ 𝐶
EF𝜎(𝑡 ≉ 𝑣 ∨ 𝑢 ≈ 𝑣 ∨ 𝐶) where 𝜎 = mgu(𝑠,𝑢),𝜎(𝑡) ⊁ 𝜎(𝑠) and 𝜎(𝑠 ≈ 𝑡) is

eligible for paramodulation

Superposition into positive literals (SP)𝑠 ≈ 𝑡 ∨ 𝐶 𝑢 ≈ 𝑣 ∨ 𝐷
SP𝜎(𝑢[𝑝 ← 𝑡] ≈ 𝑣 ∨ 𝐶 ∨ 𝐷) where 𝜎 = mgu(𝑢|𝑝, 𝑠),𝜎(𝑡) ⊁ 𝜎(𝑠),𝜎(𝑣) ⊁ 𝜎(𝑢),𝜎(𝑠 ≈ 𝑡) and 𝜎(𝑢 ≈ 𝑣) are eligible for paramod-

ulation, and 𝑢|𝑝 is not a variable

Superposition into negative literals (SN)𝑠 ≈ 𝑡 ∨ 𝐶 𝑢 ≉ 𝑣 ∨ 𝐷
SN𝜎(𝑢[𝑝 ← 𝑡] ≉ 𝑣 ∨ 𝐶 ∨ 𝐷) where 𝜎 = mgu(𝑢|𝑝, 𝑠),𝜎(𝑡) ⊁ 𝜎(𝑠),𝜎(𝑣) ⊁ 𝜎(𝑢),𝜎(𝑠 ≈ 𝑡) is eligible for paramodulation, 𝜎(𝑢 ≉ 𝑣)

is eligible for resolution, and 𝑢|𝑝 is not a variable

We call these four rules generating rules as their conclusions are added to the set of
clauses. In the rest of this thesis we denote generating rules with a horizontal bar separat-
ing premises and conclusions.

Let us give some intuition behind how these rules are applied in practice. The ER rule
is used to establish reflexivity of equality—the property that each term is equal to itself.
Consider the formula ∀∀∀𝑥.𝑥 ≈ 2→→→ even(𝑥). In clausal form it is 𝑋 ≉ 2 ∨ even(𝑋). Applying
the ER rule effectively applies the precondition 𝑋 ≈ 2 to the conclusion even(𝑋) to obtain
even(2).

2

16 Preliminaries

Similarly to the factoring rule in the standard resolution calculus, the EF rule can be
used to find instances of the clause that duplicate some literals. Additionally, it takes care
of some rarely occurring edge cases that are a consequence of restrictive side-conditions
of other rules of the calculus. Consider the clause f(𝑋) ≈ a ∨ f(𝑌) ≈ a ∨ p(𝑋 ,𝑌). Applying
EF to its first two literals yields a ≉ a ∨ f(𝑋) ≈ a ∨ p(𝑋 ,𝑋) (with 𝜎 = {𝑌 ↦ 𝑋}). This clause
then further simplifies to f(𝑋) ≈ a ∨ p(𝑋 ,𝑋) using ER.

Lastly, the rules SP and SN are used to simulate what mathematicians do when they
replace equals by equals. In calculi preceding superposition, the name paramodulation is
often used for rules that replace equals by equals. Note that with the superposition rule we
will refer to both SN and SP. The left premise intuitively states that an equation 𝑠 ≈ 𝑡 holds
under condition 𝐶 . Similarly, the right premise asserts that a (dis)equation holds under a
condition. The superposition rule simply concatenates the conditions for both premises
and replaces equals by equals in two main inference terms. For example, given clauses¬even(𝑋) ∨ f(𝑋) ≈ a and ¬even(b) ∨ g(f(𝑌)) ≈ b, superposition between their last literals
results in ¬even(𝑌) ∨ ¬even(b) ∨ g(a) ≈ b.

2.5.4 The Redundancy Criterion and Simplification Rules
The rules described above are used to generate new clauses from already derived ones.
Even though orders and selection are used to reduce the search space, many unnecessary
clauses might be created. To identify unnecessary clauses in the search space, superpo-
sition features a redundancy criterion [8, Sect. 4.2.2]. We say that a ground clause 𝐶 is
redundant in a ground set of clauses 𝑁 if it is entailed by a subset of clauses in 𝑁 such that
each clause in this subset is ≻-smaller than 𝐶 . More generally, a clause (ground or not)
is redundant in set 𝑁 if every ground instance of 𝐶 is redundant for the grounding of 𝑁 .
Removing redundant clauses does not affect completeness of superposition.

Next to the four generating rules, superposition provers also use simplification rules,
which are justified by the redundancy criterion. These rules replace the premises with
conclusions, and we denote them using double bars. In theory, the rules work by adding
conclusions and then using them to show that premises are redundant; after this, premises
can be eliminated. As an example of such a rule, let us introduce rewriting (demodulation)
of negative literals (RN):

𝑠 ≈ 𝑡 𝑢 ≉ 𝑣 ∨ 𝐷
RN𝑠 ≈ 𝑡 𝑢[𝑝 ← 𝜎(𝑡)] ≉ 𝑣 ∨ 𝐷

where 𝜎(𝑠) = 𝑢|𝑝 and 𝜎(𝑠) ≻ 𝜎(𝑡).
Simple rules such as removing duplicate literals, literals of the form 𝑠 ≉ 𝑠, or tautologi-

cal clauses are clearly justified by the redundancy criterion. Schulz gives an extensive list
of such rules [143]. This list includes the rule which allows rewriting positive literals but
has more side conditions than RN.

We say that a clause𝐶 subsumes clause𝐷 if there is a substitution 𝜎 such that 𝜎(𝐶) ⊆ 𝐷.
Subsumption is one of the most important operations of a theorem prover. This rule does
not adhere to the redundancy criterion, but can be justified using other mechanisms [171].

2.5 Superposition

2

17

2.5.5 The Saturation Procedure
Superposition provers saturate the input problem with respect to the calculus’s inference
rules using the given clause procedure [4, 116]. It partitions the proof state into a passive
set𝒫 and an active set𝒜 . All clauses start in𝒫 . At each iteration of the procedure’s main
loop, the prover chooses a clause 𝐶 from𝒫 , simplifies it, andmoves it to𝒜 (i.e., it activates
it). Then all inferences between 𝐶 and active clauses are performed. The resulting clauses
are again simplified and put in 𝒫 . We call the pair (𝒫 ,𝒜) the proof state. Provers differ
in which clauses are used for simplification: Otter-loop [116] provers use both active and
passive clauses whereas DISCOUNT-loop [4] provers use only active clauses. The provers
we discuss in this thesis, E and Zipperposition, are both DISCOUNT-loop provers.

2.5.6 Higher-Order Superposition Calculi
In Chapter 1 we described a roadmap (consisting of three steps) to extend an efficient
superposition prover to higher-order logic. My colleagues and me did the necessary the-
oretical work by extending the superposition calculus using the same roadmap:

1. Bentkamp, Blanchette, Cruanes, and Waldmann designed a complete superposition
calculus for higher-order logic devoid of 𝜆-abstraction and first-class Booleans [15].
This calculus is called the Boolean-free 𝜆-free higher-order superposition calculus and
we shortly refer to it as 𝜆fSup.

2. Bentkamp, Blanchette, Tourret, Vukmirović, and Waldmann extended this calcu-
lus to support 𝜆-abstraction [18]. They call this new calculus the Boolean-free 𝜆-
superposition calculus, and we shortly refer to it as 𝜆Sup.

3. Bentkamp, Blanchette, Tourret, and Vukmirović extended 𝜆Sup with support for
first-class Booleans [17]. This amounts to designing the complete calculus for full
higher-order logic. This calculus is called Boolean 𝜆-superposition, or shortly 𝑜𝜆Sup.

Note that in this thesis the name 𝜆-superposition is used for both 𝜆Sup and 𝑜𝜆Sup.
2.5.7 Theorem Provers
All the techniques described in this thesis have been implemented in two superposition
theorem provers: Zipperposition [48, 49] and E [143]. The former was used as a testbed
for prototyping ideas, while the latter is the main target of our work as it is more efficient.

Zipperposition Zipperposition is a higher-order theorem prover implementing 𝜆fSup,𝜆Sup, 𝑜𝜆Sup, and other superposition-like calculi (including Bhayat and Reger’s combina-
tory superposition [25]). The prover was conceived as a testbed for rapidly experimenting
with extensions of first-order superposition, but over time it has assimilated many of E’s
techniques and heuristics and become quite powerful. Still, its first-order performance is
a far cry from E’s. Zipperposition is written in OCaml, and features a modular system for
adding new rules and techniques to implemented calculi. This makes it attractive for fast
evaluation of various promising extensions of superposition.

2

18 Preliminaries

E E is a state-of-the-art first-order prover based on superposition. In the last decade,
together with its derivatives, it was usually the second place at the first-order division
of the CASC theorem prover competition [163]. It is open-source, written in C (without
using any external libraries), and designed around efficient algorithms and data structures
rather than a highly optimized codebase. This makes it a good target for implementing
successful higher-order techniques previously evaluated in Zipperposition.

3

19

3
Extending a Brainiac Prover to

Lambda-Free Higher-Order Logic

Joint work with
Jasmin Blanchette, Simon Cruanes and Stephan Schulz

Decades of work have gone into developing efficient proof calculi, data structures, algorithms,
and heuristics for first-order automatic theorem proving. Higher-order provers lag behind
in terms of efficiency. Instead of developing a new higher-order prover from the ground up,
we propose to start with the state-of-the-art superposition prover E and gradually enrich it
with higher-order features. We explain how to extend the prover’s data structures, algorithms,
and heuristics to 𝜆-free higher-order logic, a formalism that supports partial application and
applied variables. Our extension outperforms the traditional encoding and forms a stepping
stone toward full higher-order logic.

In this work I designed, implemented and evaluated all changes to term representation, algorithms and index-
ing data structures. Jasmin Blanchette came up with the extension of fingerprinting indexing. Stephan Schulz
provided the necessary E expertise.

3

20 Extending a Brainiac Prover to Lambda-Free Higher-Order Logic

3.1 Introduction
Superposition provers such as E [147], SPASS [173], and Vampire [100] are among the
most successful first-order reasoning systems. They serve as backends in various frame-
works, including software verifiers (e.g., Why3 [64]), automatic higher-order theorem pro-
vers (e.g., Leo-III [153], Satallax [39]), and one-click “hammers” in proof assistants (e.g.,
HOLyHammer in HOL Light [89], Sledgehammer in Isabelle [131]).

Decades of research have gone into refining calculi, devising efficient data structures
and algorithms, and developing heuristics to guide proof search [146]. This work has
mostly focused on first-order logic with equality.

Research on higher-order automatic provers has resulted in systems such as LEO [19],
LEO-II [22], and Leo-III [153], based on resolution and paramodulation, and Satallax [39],
based on tableaux and SAT solving. They feature a “cooperative” architecture, pioneered
by LEO: They are full-fledged higher-order provers that regularly invoke an external first-
order prover with a low time limit as a terminal procedure, in an attempt to finish the proof
quickly using only first-order reasoning. However, the first-order backend will succeed
only if all the necessary higher-order reasoning has been performed, meaning that much
of the first-order reasoning is carried out by the slower higher-order prover. As a result,
this architecture leads to suboptimal performance on largely first-order problems, such as
those that often arise in interactive verification [156]. For example, at the 2017 installment
of the CADE ATP System Competition (CASC) [159], Leo-III, which uses E as a backend,
proved 652 out of 2000 first-order problems in the Sledgehammer division, compared with
1185 for E on its own and 1433 for Vampire.

To obtain better performance, we propose to start with a competitive first-order prover
and extend it to full higher-order logic one feature at a time. Our goal is a graceful exten-
sion, so that the system behaves as before on first-order problems, performs mostly like
a first-order prover on typical, mildly higher-order problems, and scales up to arbitrary
higher-order problems, in keeping with the zero-overhead principle: What you don’t use,
you don’t pay for.

As a stepping stone toward full higher-order logic, we initially restrict our focus to a
higher-order logic without 𝜆-expressions (Sect. 3.2). Compared with first-order logic, its
distinguishing features are partial application and applied variables. It is rich enough to
express the recursive equations of higher-order combinators, such as map on lists:

map 𝑓 nil ≈ nil map 𝑓 (cons 𝑥 xs) ≈ cons (𝑓 𝑥) (map 𝑓 xs)
Our vehicle is E [143, 147], a prover developed primarily by Schulz. It is written in

C and offers good performance. It gets its “brainiac” name by emphasizing intelligent
heuristics more than raw speed. E regularly scores among the top systems at CASC and
is usually the strongest open-source prover in the relevant divisions. It also serves as a
backend for competitive higher-order provers. We refer to our extended version of E as
Ehoh. It corresponds to a prerelease version of E 2.5 configured with the option --enable-
ho.¹

Themain challengeswe faced involved the representation of types and terms (Sect. 3.3),
the unification and matching algorithms (Sect. 3.4), and the indexing data structures (Sect.

¹https://github.com/eprover/eprover/commit/80946ac

https://github.com/eprover/eprover/commit/80946ac

3.2 Logic

3

21

3.5). We also adapted the inference rules (Sect. 3.6), the heuristics (Sect. 3.7), and the
preprocessor (Sect. 3.8).

A central aspect of our work is a set of techniques we call prefix optimization. Taking
a traditional look at higher-order terms, they contain twice as many proper subterms as
first-order terms; for example, f (g a) b contains not only the “argument” subterms g a,
a, b but also the “prefix” subterms f, f (g a), g. Many operations, including superposition
and rewriting, require traversing all subterms of a term. The prefix optimization allows
the prover to traverse subterms recursively in a first-order fashion, and simultaneously
consider the prefixes of a given subterm at almost no additional cost. Our experiments
(Sect. 3.9) show that Ehoh is almost as fast as E on first-order problems and can also prove
higher-order problems that do not require synthesizing 𝜆-terms. In Chapter 7 we show
how to add support for 𝜆-terms and higher-order unification.

3.2 Logic
Our logic is a variant of the intensional 𝜆-free Boolean-free higher-order logic (𝜆fHOL)
described by Bentkamp et al. [15, Sect. 2], which could also be called “applicative first-order
logic.” In the spirit of FOOL [98], we extend the syntax of this logic by making formulas a
special case of terms (without adding logical symbols to the signature), and its semantics
by interpreting the Boolean type 𝑜 as a two-element domain. Functional extensionality,
the property that two functions are equal if they always return the same value when given
the same arguments, can be obtained by adding suitable axioms [15, Sect. 3.1].

This logic differs from the higher-order logic described in Sect. 2.3 in three ways. First,𝜆-abstraction is disallowed. Second, logical connectives are not part of the set of symbols.
Instead, there is a special inductive case in the definition of terms that defines formulas.
Third, subterms are defined in a more traditional way, as defined below.

For reference, we provide the definition of terms. Terms, ranged over by 𝑠, 𝑡,𝑢,𝑣 , are
either variables 𝑥,𝑦,𝑧,… , (function) symbols a,b,c,d, f,g,… (often called “constants” in the
higher-order literature), binary applications 𝑠 𝑡 , or Boolean terms⊤⊤⊤,⊥⊥⊥,¬¬¬𝑠, 𝑠∧∧∧𝑡 , 𝑠∨∨∨𝑡 , 𝑠→→→𝑡 ,𝑠↔↔↔𝑡 , ∀∀∀𝑥. 𝑠, ∃∃∃𝑥. 𝑠, 𝑠 ≈≈≈ 𝑡 . E and Ehoh clausify the input as a preprocessing step, producing
a clause set in which the only proper Boolean subterms are variables, ⊤⊤⊤, and ⊥⊥⊥. Note that
we use lowercase letters for free variables as bound variables do not appear in clauses. A
term’s arity is the number of extra arguments it can take. If 𝜄 is a base type, f has type𝜄 → 𝜄 → 𝜄, and a has type 𝜄, then f is binary, f a is unary, and f a a is nullary. Subterms are
defined in the traditional higher-order way; for example, 𝑠 𝑡 has all subterms of 𝑠 and 𝑡 as
subterms, in addition to 𝑠 𝑡 itself; as a consequence f a is a subterm of f a a. With Var(𝑥)
we denote the set of free variables of 𝑥 where 𝑥 ranges over terms, clauses, set of clauses,
or any other objects that contain terms.

In this chapter, substitutions 𝜎 are partial functions of finite domain from variables
to terms, written {𝑥1 ↦ 𝑠1,…,𝑥𝑚 ↦ 𝑠𝑚}, where each 𝑠𝑖 has the same type as 𝑥𝑖 . The
substitution 𝜎[𝑥 ↦𝑠]maps 𝑥 to 𝑠 and otherwise coincideswith 𝜎 . Applying 𝜎 to a variable
beyond 𝜎 ’s domain is the identity. We deviated from the view of substitutions in Sect. 2.3 as
it made proofs in Sect. 3.4 and 3.5 easier. It is easy to check that both views are equivalent.
We also consider unification constraints 𝑠 ?= 𝑡 as ordered pairs.

A well-known technique to support 𝜆fHOL is to use the applicative encoding: Every𝑛-ary symbol is mapped to a nullary symbol, and application is represented by a distin-

3

22 Extending a Brainiac Prover to Lambda-Free Higher-Order Logic

guished binary symbol @. Thus, the 𝜆fHOL term f (𝑥 a) b is encoded as the first-order
term @(@(f,@(𝑥,a)),b). However, this representation is not graceful, since it also intro-
duces @’s for terms within 𝜆fHOL’s first-order fragment. By doubling the size and depth
of terms, the encoding clutters data structures and slows down term traversals. In our
empirical evaluation, we find that the applicative encoding can decrease the success rate
by up to 15% (Sect. 3.9). For these and further reasons, it is not ideal (Sect. 3.10).

3.3 Types and Terms
The term representation is a central concern when building a theorem prover. Delicate
changes to E’s representation were needed to support partial application and especially
applied variables. In contrast, the introduction of a higher-order type system had a less
dramatic impact on the prover’s code.

Types For most of its history, E supported only untyped first-order logic. Cruanes im-
plemented support for atomic types for E 2.0 [48, p. 117]. Symbols are declared with a
type signature: f ∶ (𝜏1,…,𝜏𝑛) → 𝜏. Atomic types are represented by integers, leading to
efficient type comparisons.

In 𝜆fHOL, function types are built using the type constructor→, which can be arbitrar-
ily nested—e.g., (𝜄 → 𝜄)→ 𝜄. A natural way to represent such types is to mimic their recur-
sive structure using a tagged union. However, this leads to memory fragmentation; a sim-
ple operation such as querying the type of a function’s 𝑖th argument would require derefer-
encing 𝑖 pointers. We prefer a flattened representation, in which a type 𝜏1 →⋯→𝜏𝑛 → 𝜄
is represented by a single node labeled with → and pointing to the array (𝜏1,…,𝜏𝑛, 𝜄).

Ehoh stores all types in a shared bank and implements perfect sharing, ensuring that
types that are structurally the same are represented by the same object in memory. Type
equality can then be implemented as a pointer comparison.

Terms In E, terms are stored as perfectly shared directed acyclic graphs [109]. Each
node, or cell, contains 11 fields, including f_code, an integer that identifies the term’s
head symbol (if ≥ 0) or variable (if < 0); arity, an integer corresponding to the number
of arguments passed to the head; args, an array of size arity consisting of pointers to
arguments; and binding, which may store a substitution for a variable (if f_code < 0),
used for unification and matching.

In first-order logic, the arity of a variable is always 0, and the arity of a symbol is
given by its type signature. In higher-order logic, variables may have function type and
be applied, and symbols can be applied to fewer arguments than specified by their type
signatures. A natural representation of 𝜆fHOL terms as tagged unions would distinguish
between variables 𝑥 , symbols f, and binary applications 𝑠 𝑡. However, this scheme suffers
from memory fragmentation and linear-time access, as with the representation of types,
affecting performance on purely or mostly first-order problems. Instead, we propose a flat-
tened representation, as a generalization of E’s existing data structures: Allow arguments
to variables, for symbols let arity be the number of actual arguments, and rename the field
to num_args. This representation, often called “spine notation,” is isomorphic to the stan-

3.3 Types and Terms

3

23

dard definition of higher-order terms with binary application. It is employed in various
higher-order reasoning systems, including Leo-III [153] and Zipperposition [48, 49].

A side effect of the flattened representation is that prefix subterms are not shared. For
example, the terms f a and f a b correspond to the flattened cells f(a) and f(a,b). The argu-
ment subterm a is shared, but not the prefix f a. Similarly, 𝑥 and 𝑥 b are represented by two
distinct cells, 𝑥() and 𝑥(b), and there is no connection between the two occurrences of 𝑥 .
In particular, when 𝑥()’s binding field is updated, this does not affect the binding of 𝑥(b).

A potential solution would be to systematically traverse a clause and set the binding
fields of all cells of the form 𝑥(𝑠) whenever a variable 𝑥 is bound, but this would be inef-
ficient and inelegant. Instead, we implemented a hybrid approach: Variables are applied
by an explicit application operator @, to ensure that they are always perfectly shared.
Thus, 𝑥 b c is represented by the cell @(𝑥,b,c), where 𝑥 is a shared subcell. This is grace-
ful, since variables never occur applied in first-order terms. The main drawback is that
some normalization is necessary after substitution: Whenever a variable is instantiated
by a symbol-headed term, the @ symbol must be eliminated. Applying the substitution{𝑥 ↦ f a} to the cell @(𝑥,b,c) must produce f(a,b,c) and not @(f(a),b,c), for consistency
with other occurrences of f a b c.

There is one more complication related to the binding field. In E, it is easy and useful
to traverse a term as if a substitution has been applied, by following all set binding fields.
In Ehoh, this is not enough, because cells must also be normalized. To avoid repeatedly
creating the same normalized cells, we introduced a binding_cache field that connects a@(𝑥, 𝑠) cell with its substitution. However, this cache can easily become stale when 𝑥 ’s
binding pointer is updated. To detect this situation, we store 𝑥 ’s binding value in the@(𝑥, 𝑠) cell’s binding field (which is otherwise unused). To find out whether the cache is
valid, it suffices to check that the binding fields of 𝑥 and @(𝑥, 𝑠) are equal.

Term Orders Superposition provers rely on term orders to prune the search space. The
order must be a reduction order (Sect. 2.5.1). E implements both the Knuth–Bendix order
(KBO) and the lexicographic path order (LPO). KBO is widely regarded as the more robust
option for superposition. In earlier work, Blanchette and colleagues have shown that
only KBO can be generalized gracefully while preserving the necessary properties for
superposition [13, 32]. For this reason, in this chapter, we focus on KBO.

E implements Löchner’s linear-time algorithm for KBO [108], which relies on the tu-
pling method to store intermediate results. It is straightforward to generalize the algo-
rithm to compute the graceful 𝜆fHOL version of KBO [13]. The main difference is that
when comparing two terms f 𝑠𝑚 and f 𝑡𝑛 , because of partial application it is possible that𝑚 ≠ 𝑛; this required changing the implementation to perform a length-lexicographic com-
parison of the tuples 𝑠𝑚 and 𝑡𝑛.
Input and Output Syntax E implements the TPTP [157] formats FOF and TF0, corre-
sponding to untyped and monomorphic first-order logic, for both input and output. In
Ehoh, we added support for the 𝜆fHOL fragment of TPTP TH0, which provides mono-
morphic higher-order logic. Thanks to the use of a standard format, Ehoh’s proofs can
immediately be parsed by Sledgehammer [131], which reconstructs them using a variety
of techniques. There is ongoing work on increasing the level of detail of E’s proofs, to

3

24 Extending a Brainiac Prover to Lambda-Free Higher-Order Logic

facilitate proof interchange and independent proof checking [135]; this will also benefit
Ehoh.

3.4 Unification and Matching
Syntactic unification of 𝜆fHOL terms has a first-order flavor. It is decidable, and most
general unifiers (MGUs) are unique up to variable renaming. For example, the unification
constraint f (𝑥 a) ?= 𝑥 (f a), used to illustrate an infinite set of independent unifiers in full
higher-order logic (Sect. 2.5.2), has the MGU {𝑥 ↦ f} in 𝜆fHOL. Matching is a special case
of unification where only the variables on the left-hand side can be instantiated.

An easy but inefficient way to implement unification and matching for 𝜆fHOL is to ap-
ply the applicative encoding (Sect. 3.2), perform first-order unification or matching, and
decode the resulting substitution. To avoid overhead, we generalize the first-order unifi-
cation and matching procedures to operate directly on 𝜆fHOL terms.

3.4.1 Unification
We present our unification procedure as a nondeterministic transition system that gener-
alizes the one of Baader and Nipkow [5]. A unification problem consists of a finite set S of
unification constraints 𝑠𝑖 ?= 𝑡𝑖 , where 𝑠𝑖 and 𝑡𝑖 are of the same type. A problem is in solved
form if it has the form {𝑥1 ?= 𝑡1,…,𝑥𝑛 ?= 𝑡𝑛}, where the 𝑥𝑖 ’s are distinct and do not occur in
the 𝑡𝑗 ’s. The corresponding unifier is {𝑥1 ↦ 𝑡1,…,𝑥𝑛 ↦ 𝑡𝑛}. The transition rules attempt
to bring the input constraints into solved form. They can be applied in any order and
eventually reach a normal form, which is either an idempotent MGU expressed in solved
form or the special value ⊥, denoting unsatisfiability of the constraints.

The first group of rules—the positive rules—consists of operations that focus on a single
constraint and replace it with a new (possibly empty) set of constraints:

Delete {𝑡 ?= 𝑡} ⊎ S ⟹ S
Decompose {f 𝑠𝑚 ?= f 𝑡𝑚} ⊎ S ⟹ S∪ {𝑠1 ?= 𝑡1,…, 𝑠𝑚 ?= 𝑡𝑚}
DecomposeX {𝑥 𝑠𝑚 ?= 𝑢 𝑡𝑚} ⊎ S ⟹ S∪ {𝑥 ?= 𝑢, 𝑠1 ?= 𝑡1,…, 𝑠𝑚 ?= 𝑡𝑚}

if 𝑥 and 𝑢 have the same type and 𝑚 > 0
Orient {f 𝑠 ?= 𝑥 𝑡} ⊎ S ⟹ S∪ {𝑥 𝑡 ?= f 𝑠}
OrientXY {𝑥 𝑠𝑚 ?= 𝑦 𝑡𝑛} ⊎ S ⟹ S∪ {𝑦 𝑡𝑛 ?= 𝑥 𝑠𝑚}

if 𝑚 > 𝑛
Eliminate {𝑥 ?= 𝑡} ⊎ S ⟹ {𝑥 ?= 𝑡} ∪ {𝑥 ↦ 𝑡}(S)

if 𝑥 ∈ Var(S) ⧵Var(𝑡)
The Delete, Decompose, and Eliminate rules are essentially as for first-order terms. The

Orient rule is generalized to allow applied variables and complemented by a new OrientXY
rule. DecomposeX, also a new rule, can be seen as a variant of Decompose that analyzes
applied variables; the term 𝑢 may be an application.

The rules of the second group—the negative rules—detect unsolvable constraints:

3.4 Unification and Matching

3

25

Clash {f 𝑠 ?= g 𝑡} ⊎ S ⟹ ⊥; if f ≠ g

ClashTypeX {𝑥 𝑠𝑚 ?= 𝑢 𝑡𝑚} ⊎ S ⟹ ⊥ ; if 𝑥 and 𝑢 have different types
ClashLenXF {𝑥 𝑠𝑚 ?= f 𝑡𝑛} ⊎ S ⟹ ⊥; if 𝑚 > 𝑛
OccursCheck {𝑥 ?= 𝑡} ⊎ S ⟹ ⊥; if 𝑥 ∈ Var(𝑡) and 𝑥 ≠ 𝑡
Clash and OccursCheck are essentially as in Baader and Nipkow. ClashTypeX and Clash-

LenXF are variants of Clash for applied variables.
The derivation below demonstrates the computation of MGUs for the unification prob-

lem {𝑥 (𝑧 bc) ?= ga (𝑦 c)}: {𝑥 (𝑧 bc) ?= ga (𝑦 c)}⟹DecomposeX {𝑥 ?= ga, 𝑧 bc ?= 𝑦 c}⟹OrientXY {𝑥 ?= ga, 𝑦 c ?= 𝑧 bc}⟹DecomposeX {𝑥 ?= ga, 𝑦 ?= 𝑧 b, c ?= c}⟹Delete {𝑥 ?= ga, 𝑦 ?= 𝑧 b}
E stores open constraints in a double-ended queue. Constraints are processed from

the front. New constraints are added at the front if they involve complex terms that can
be dealt with swiftly by Decompose or Clash, or to the back if one side is a variable. This
delays instantiation of variables and allows E to detect structural clashes early.

During proof search, E repeatedly needs to test a term 𝑠 for unifiability not only with
some other term 𝑡 but also with 𝑡’s subterms. Prefix optimization speeds up this test: The
subterms of 𝑡 are traversed in a first-order fashion; for each such subterm 𝜁 𝑡𝑛 , at most
one prefix 𝜁 𝑡𝑘 , with 𝑘 ≤ 𝑛, is possibly unifiable with 𝑠, by virtue of their having the same
arity. For first-order problems, we can only have 𝑘 = 𝑛, since all functions are fully applied.
Using this technique, Ehoh is virtually as efficient as E on first-order terms.

The transition system introduced above always terminates with a correct answer. Our
proofs follow the lines of Baader and Nipkow. The metavariable R is used to range over
constraint sets S and the special value ⊥. The set of all unifiers of S is denoted by U(S).
Note that U(S ∪ S′) = U(S) ∩U(S′). We let U(⊥) = ∅. The notation S ⟹! S′ indicates that
S ⟹∗ S′ and S′ is a normal form (i.e., there exists no S″ such that S′ ⟹ S″). A variable𝑥 is solved in S if it occurs exactly once in S, in a constraint of the form 𝑥 ?= 𝑡.
Lemma 3.1. If S ⟹ R , then U(S) = U(R).
Proof. The rules Delete, Decompose, Orient, and Eliminate are proved as in Baader and Nip-
kow. OrientXY trivially preserves unifiers. For DecomposeX, the core of the argument is as
follows: 𝜎 ∈ U({𝑥 𝑠𝑚 ?= 𝑢 𝑡𝑚})

iff 𝜎(𝑥 𝑠𝑚) = 𝜎(𝑢 𝑡𝑚)
iff 𝜎(𝑥) 𝜎(𝑠1) … 𝜎(𝑠𝑚) = 𝜎(𝑢) 𝜎(𝑡1) … 𝜎(𝑡𝑚)
iff 𝜎(𝑥) = 𝜎(𝑢), 𝜎(𝑠1) = 𝜎(𝑡1), …, and 𝜎(𝑠𝑚) = 𝜎(𝑡𝑚)
iff 𝜎 ∈ U({𝑥 ?= 𝑢, 𝑠1 ?= 𝑡1,…, 𝑠𝑚 ?= 𝑡𝑚})

The proof of the problem’s unsolvability if rule Clash or OccursCheck is applicable car-
ries over from Baader and Nipkow. For ClashTypeX, the justification is that 𝜎(𝑥 𝑠𝑚) =

3

26 Extending a Brainiac Prover to Lambda-Free Higher-Order Logic

𝜎(𝑢 𝑡𝑚) is possible only if 𝜎(𝑥) = 𝜎(𝑢), which requires 𝑥 and 𝑢 to have the same type.
Similarly, for ClashLenXF, if 𝜎(𝑥 𝑠𝑚) = 𝜎(f 𝑡𝑛) with 𝑚 > 𝑛, we must have 𝜎(𝑥 𝑠𝑚−𝑛) =𝜎(𝑥) 𝜎(𝑠1) … 𝜎(𝑠𝑚−𝑛) = f, which is impossible. !

Lemma 3.2. If S is a normal form, then S is in solved form.

Proof. Consider an arbitrary unification constraint 𝑠 ?= 𝑡 ∈ S. We show that in all but one
cases, a rule is applicable, contradicting the hypothesis that S is a normal form. In the
remaining case, 𝑠 is a solved variable in S.
CASE 𝑠 = 𝑥 :

• SUBCASE 𝑡 = 𝑥 : Delete is applicable.

• SUBCASE 𝑡 ≠ 𝑥 and 𝑥 ∈ Var(𝑡): OccursCheck is applicable.

• SUBCASE 𝑡 ≠ 𝑥 , 𝑥 ∉ Var(𝑡), and 𝑥 ∈ Var(S⧵ {𝑠 ?= 𝑡}): Eliminate is applicable.

• SUBCASE 𝑡 ≠ 𝑥 , 𝑥 ∉ Var(𝑡), and 𝑥 ∉ Var(S⧵ {𝑠 ?= 𝑡}): The variable 𝑥 is solved in S.

CASE 𝑠 = 𝑥 𝑠𝑚 for 𝑚 > 0:
• SUBCASE 𝑡 = 𝜂 𝑡𝑛 for 𝑛 ≥ 𝑚: DecomposeX or ClashTypeX is applicable, depending on
whether 𝑥 and 𝜂 𝑡𝑛−𝑚 have the same type.

• SUBCASE 𝑡 = 𝑦 𝑡𝑛 for 𝑛 < 𝑚: OrientXY is applicable.

• SUBCASE 𝑡 = f 𝑡𝑛 for 𝑛 < 𝑚: ClashLenXF is applicable.

CASE 𝑠 = f 𝑠𝑚:

• SUBCASE 𝑡 = 𝑥 𝑡𝑛: Orient is applicable.
• SUBCASE 𝑡 = f 𝑡𝑛: Due to well-typedness, 𝑚 = 𝑛. Decompose is applicable.

• SUBCASE 𝑡 = g 𝑡𝑛: Clash is applicable.

Since each constraint is of the form 𝑥 ?= 𝑡 where 𝑥 is solved in S, the problem S is in solved
form. !

Lemma 3.3. If the constraint set S is in solved form, then the associated substitution is an
idempotent MGU of S.
Proof. This lemma corresponds to Lemma 4.6.3 of Baader and Nipkow. Their proof carries
over to 𝜆fHOL. !

Theorem 3.4 (Partial Correctness). If S ⟹! ⊥, then S has no solutions. If S ⟹! S′, then
S′ is in solved form and the associated substitution is an idempotent MGU of S.

Proof. The first part follows from Lemma 3.1. The second part follows from Lemma 3.1
and Lemmas 3.2 and 3.3. !

3.4 Unification and Matching

3

27

Theorem 3.5 (Termination). The relation ⟹ is well founded.

Proof. We define an auxiliary notion of weight: W (𝜁 𝑠𝑚) = 𝑚 + 1 +∑𝑚𝑖=1 W (𝑠𝑖). Well-
foundedness is proved by exhibiting ameasure function from constraint sets to quadruples
of natural numbers (𝑛1,𝑛2,𝑛3,𝑛4), where 𝑛1 is the number of unsolved variables in S; 𝑛2
is the sum of all term weights, ∑𝑠 ?=𝑡∈S W (𝑠) +W (𝑡); 𝑛3 is the number of right-hand sides
with variable heads, |{𝑠 ?= 𝑥 𝑡 ∈ S}|; and 𝑛4 is the number of arguments to left-hand side
variable heads, ∑𝑥 𝑠𝑚 ?=𝑡∈S𝑚.

The following table shows that the application of each positive rule lexicographically
decreases the quadruple: 𝑛1 𝑛2 𝑛3 𝑛4

Delete ≥ >
Decompose ≥ >
DecomposeX ≥ >
Orient ≥ = >
OrientXY ≥ = = >
Eliminate >

The negative rules, which produce the special value ⊥, cannot contribute to an infinite⟹
chain. !

A unification algorithm for 𝜆fHOL can be derived from the above transition system, by
committing to a strategy for applying the rules. An algorithm which closely follows the
Ehoh implementation, abstracting away from complications such as prefix optimization is
presented below. We assume a flattened representation of terms; as in Ehoh, each variable
stores the term it is bound to in its binding field (Sect. 3.3). We also rely on a APPLYSUBST
function, which applies the binding to the top-level variable. The algorithm assumes that
the terms to be unified have the same type. The pseudocode is as follows:

function SWAPNEEDED(Term s, Term t) is
return 𝑡.head.isVar()∧ (¬𝑠.head.isVar() ∨ 𝑠.num_args > 𝑡.num_args)

function DEREF(Term s) is
while 𝑠.head.isVar() ∧ 𝑠.head.binding ≠ Null do𝑠 ← APPLYSUBST(𝑠, 𝑠.head.binding)
return 𝑠

function GOBBLEPREFIX(Term 𝑥 , Term 𝑡) is
res ← Null
if 𝑥.type.args is suffix of t.head.type.args then

pref_len ← t.head.type.arity−𝑥.type.arity
if pref_len ≤ 𝑡.num_args then

res ← TERM(𝑡.head, 𝑡.args[1 . .pref_len])
return res

3

28 Extending a Brainiac Prover to Lambda-Free Higher-Order Logic

function UNIFY(Term s, Term t) is
constraints ← DOUBLEENDEDQUEUE()
constraints.prepend(s)
constraints.prepend(t)
while ¬constraints.isEmpty() do𝑡 ← DEREF(constraints.dequeue())𝑠 ← DEREF(constraints.dequeue())
if 𝑠 ≠ 𝑡 then

if SWAPNEEDED(𝑠, 𝑡) then(𝑡, 𝑠) ← (𝑠, 𝑡)
if 𝑠.head.isVar() then𝑥 ← 𝑠.head

prefix ← GOBBLEPREFIX(𝑥, 𝑡)
if prefix ≠ Null then

start_idx ← prefix.num_args+1
if 𝑥 occurs in prefix then
return False

else𝑥.binding ← prefix
else
return False

else if 𝑠.head = 𝑡.head then
start_idx ← 1

else
return False

for 𝑖 ← start_idx to 𝑡.num_args do
s_arg ← 𝑠.args[𝑖 − start_idx+1]
t_arg ← 𝑡.args[𝑖]
if (s_arg.head.isVar() ∨ t_arg.head.isVar()) then

constraints.append(𝑡_arg)
constraints.append(𝑠_arg)

else
constraints.prepend(𝑠_arg)
constraints.prepend(𝑡_arg)

return True

3.4.2 Matching
Given 𝑠 and 𝑡 , the matching problem consists of finding a substitution 𝜎 such that 𝜎(𝑠) =𝑡. We then write that “𝑡 is an instance of 𝑠” or “𝑠 generalizes 𝑡 .” We are interested in
most general generalizations (MGGs). Matching can be reduced to unification by treating
variables in 𝑡 as nullary symbols [5], but E implements matching separately.

Matching can be specified abstractly as a transition system on matching constraints𝑠𝑖 ≲? 𝑡𝑖 consisting of the unification rules Decompose, DecomposeX, Clash, ClashTypeX,
ClashLenXF (with ≲? instead of ?=) and augmented with

3.5 Indexing Data Structures

3

29

Double {𝑥 ≲? 𝑡, 𝑥 ≲? 𝑡′} ⊎ S ⟹ ⊥; if 𝑡 ≠ 𝑡′
ClashLenXY {𝑥 𝑠𝑚 ≲? 𝑦 𝑡𝑛} ⊎ S ⟹ ⊥; if 𝑥 ≠ 𝑦 and 𝑚 > 𝑛
ClashFX {f 𝑠 ≲? 𝑥 𝑡} ⊎ S ⟹ ⊥

The matching relation is sound, complete, and well founded. Interestingly, a Delete
rule would be unsound for matching. Consider the problem {𝑥 ≲? 𝑥,𝑥 ≲? g 𝑥}. Applying
Delete to the first constraint would yield the solution {𝑥 ≲? g 𝑥}, even though the original
problem is clearly unsolvable.

3.5 Indexing Data Structures
Superposition provers like E work by saturation. Their main loop heuristically selects a
clause and searches for potential inference partners among a possibly large set of other
clauses. Mechanisms such as simplification and subsumption also require locating terms
in a large clause set. For example, when E derives a new equation 𝑠 ≈ 𝑡 , if 𝑠 is larger than 𝑡
according to the term order, it will rewrite all instances 𝜎(𝑠) of 𝑠 to 𝜎(𝑡) in existing clauses.

To avoid iterating over all terms (including subterms) in large clause sets, superposi-
tion provers store the potential inference partners in indexing data structures. A term
index stores a set of terms S. Given a query term 𝑡 , a query returns all terms 𝑠 ∈ S that sat-
isfy a given retrieval condition: 𝜎(𝑠) = 𝜎(𝑡) (𝑠 and 𝑡 are unifiable), 𝜎(𝑠) = 𝑡 (𝑠 generalizes 𝑡),
or 𝑠 = 𝜎(𝑡) (𝑠 is an instance of 𝑡), for some substitution 𝜎. Perfect indices return exactly
the subset of terms satisfying the retrieval condition. In contrast, imperfect indices re-
turn a superset of eligible terms, and the retrieval condition needs to be checked for each
candidate.

E relies on two term indexing data structures, perfect discrimination trees [113] and
fingerprint indices [144], that needed to be generalized to 𝜆fHOL. It also uses feature vec-
tor indices [145] to speed up subsumption and related techniques, but these require no
changes to work with 𝜆fHOL.

3.5.1 Discrimination Trees
Discrimination trees [113] are tries in which every node is labeled with a symbol or a vari-
able. A path from the root to a leaf corresponds to a “serialized term”—a term expressed
without parentheses and commas. Consider the following discrimination trees 𝐷1 and 𝐷2:

f

a

g

a

a

b

a b

f𝑥 g

a

a

𝑦
a 𝑥

𝑥

Assuming a,b, 𝑥,𝑦 ∶ 𝜄, f ∶ 𝜄 → 𝜄, and g ∶ 𝜄2 → 𝜄, 𝐷1 represents the term set {f(a), g(a,a),
g(b,a), g(b,b)}, and 𝐷2 represents the term set {f(𝑥), g(a,a), g(𝑦,a), g(𝑦,𝑥), 𝑥}. E uses per-
fect discrimination trees for finding generalizations of query terms. Thus, if the query
term is g(a,a), it would follow the path g.a.a in 𝐷1 and return {g(a,a)}. For 𝐷2, it would

3

30 Extending a Brainiac Prover to Lambda-Free Higher-Order Logic

also explore paths labeled with variables, binding them as it proceeds, and return {g(a,a),
g(𝑦,a), g(𝑦,𝑥), 𝑥}.

It is crucial for this data structure that distinct terms always give rise to distinct seri-
alized terms. Conveniently, this property also holds for 𝜆fHOL terms. Suppose that two
distinct 𝜆fHOL terms yield the same serialization. Clearly, they must disagree on paren-
theses; one will have the subterm 𝑠 𝑡 𝑢 where the other has 𝑠 (𝑡 𝑢). However, these two
subterms cannot both be well typed.

When generalizing the data structure to 𝜆fHOL, we face a complication due to partial
application. First-order terms can only be stored in leaf nodes, but in Ehoh we must also
be able to represent partially applied terms, such as f, g, or g a (assuming, as above, that f is
unary and g is binary). Conceptually, this can be solved by storing a Boolean on each node
indicating whether it is an accepting state (i.e., if it corresponds to a term in the indexed
set). In the implementation, the change is more subtle, because several parts of E’s code
implicitly assume that only leaf nodes are accepting.

The main difficulty specific to 𝜆fHOL concerns applied variables. To enumerate all
generalizing terms, E needs to backtrack from child to parent nodes. This is achieved
using two stacks that store subterms of the query term: 𝑇 stores the terms that must be
matched in turn against the current subtree, and 𝑃 stores, for each node from the root to
the current subtree, the corresponding processed term.

Let [𝑎1,…,𝑎𝑛] denote an 𝑛-item stack with 𝑎1 on top. Given a query term 𝑡 , the match-
ing procedure starts at the root with 𝜎 = ∅, 𝑇 = [𝑡], and 𝑃 = []. The procedure advances by
repeatedly moving to a suitable child node:

A. If the node is labeled with a symbol f and the top item 𝑡 of 𝑇 is of the form f(𝑡𝑛),
replace 𝑡 by 𝑛 new items 𝑡1,… , 𝑡𝑛 , and push 𝑡 onto 𝑃 .

B. If the node is labeled with a variable 𝑥 , there are two subcases. If 𝑥 is already bound,
check that 𝜎(𝑥) = 𝑡 ; otherwise, extend 𝜎 so that 𝜎(𝑥) = 𝑡. Next, pop the term 𝑡 from𝑇 and push it onto 𝑃 .

The goal is to reach an accepting node. If the query term and all the terms stored in the
tree are first-order, 𝑇 will then be empty, and the entire query termwill have beenmatched.
Backtracking works in reverse: Pop a term 𝑡 from 𝑃 ; if the current node is labeled with an𝑛-ary symbol, discard 𝑇 ’s topmost 𝑛 items; push 𝑡 onto 𝑇 . Undo any variable bindings.

As an example, looking up g(b,a) in the tree 𝐷1 would result in the following succes-
sion of stack states, starting from the root 𝜀 along the path g.b.a:𝜀 g g.b g.b.a𝜎∶ ∅ ∅ ∅ ∅𝑇∶ [g(b,a)] [b,a] [a] []𝑃∶ [] [g(b, a)] [b, g(b, a)] [a, b, g(b,a)]
Backtracking amounts to moving leftward: To get back from g to the root, we pop g(b,a)
from 𝑃 , we discard two items from 𝑇 , and we push g(b,a) onto 𝑇 .

To adapt the procedure to 𝜆fHOL, the key idea is that an applied variable is not very
different from an applied symbol. A node labeled with an 𝑛-ary head 𝜁 matches a prefix 𝑡′
of the 𝑘-ary term 𝑡 popped from 𝑇 and leaves 𝑛 −𝑘 arguments 𝑢 to be pushed back, with

3.5 Indexing Data Structures

3

31

𝑡 = 𝑡′ 𝑢. If 𝜁 is a variable, it must be bound to the prefix 𝑡′ assuming 𝜁 and 𝑡′ are of same
type. Backtracking works analogously: Given the arity 𝑛 of the node label 𝜁 and the arity𝑘 of the term 𝑡 popped from 𝑃 , we discard the topmost 𝑛−𝑘 items 𝑢 from 𝑃 .

To illustrate the procedure, we consider the tree 𝐷2 but change 𝑦’s type to 𝜄 → 𝜄. This
tree stores {f 𝑥, g a a, g (𝑦 a), g (𝑦 𝑥), 𝑥}. Let g (g a b) be the query term. We have the
following sequence of substitutions 𝜎 and stacks 𝑇 ,𝑃 :𝜀 g g.𝑦 g.𝑦.𝑥∅ ∅ {𝑦 ↦ ga} {𝑦 ↦ ga, 𝑥 ↦ b}[g (gab)] [gab] [b] [][] [g (gab)] [gab, g (gab)] [b, gab, g (gab)]

When backtracking from g.𝑦 to g, by comparing 𝑦’s arity of 𝑛 = 1 with g a b’s arity of𝑘 = 0, we determine that one item must be discarded from 𝑇 . Finally, to avoid traversing
twice as many subterms as in the first-order case, we can optimize prefixes: Given a query
term 𝜁 𝑡𝑛 , we can also match prefixes 𝜁 𝑡𝑘 , where 𝑘 < 𝑛, by allowing 𝑇 to be nonempty
when we reach an accepting node.

Similarly to unification and matching, we present finding generalizations in a perfect
discrimination tree as a transition system. States are quadruples Q = (𝑡,𝑏,D,𝜎), where 𝑡 is
a list of terms, 𝑏 is a list of tuples storing backtracking information, D is a discrimination
(sub)tree, and 𝜎 is a substitution.

Let 𝐷 be a perfect discrimination tree. Term(𝐷) denotes the set of terms stored in𝐷. The function 𝐷|𝜁 returns the child of 𝐷 labeled with 𝜁 , if it exists. Child nodes are
themselves perfect discrimination (sub)trees. Given any node 𝐷, if the node is accepting,
then the value stored on that node is defined as val(𝐷) = (𝑠,𝑑), where 𝑠 is the accepted
term and 𝑑 is some arbitrary data; otherwise, val(𝐷) is undefined.

Starting from an initial state ([𝑡], [],𝐷,∅), where 𝑡 is the query term and 𝐷 is an entire
discrimination tree, the following transitions are possible:
AdvanceF (f 𝑠𝑚 ⋅ 𝑡, 𝑏, 𝐷, 𝜎)! (𝑠𝑚 ⋅ 𝑡, (f 𝑠𝑚,𝐷,𝜎) ⋅ 𝑏, 𝐷|f, 𝜎)

if 𝐷|f is defined
AdvanceX (𝑠 𝑠𝑚 ⋅ 𝑡, 𝑏, 𝐷, 𝜎)! (𝑠𝑚 ⋅ 𝑡, (𝑠 𝑠𝑚,𝐷,𝜎) ⋅ 𝑏, 𝐷|𝑥 , 𝜎[𝑥 ↦ 𝑠])

if 𝐷|𝑥 is defined, 𝑥 and 𝑠 have the same type,
and 𝜎(𝑥) is either undefined or equal to 𝑠

Backtrack (𝑠𝑚 ⋅ 𝑡, (𝑠,𝐷0,𝜎0) ⋅ 𝑏, 𝐷, 𝜎)! (𝑠 ⋅ 𝑡, 𝑏, 𝐷0, 𝜎0)
if 𝐷0|𝜁 = 𝐷 and 𝑚 = arity(𝜁) −arity(𝑠)

Success ([], 𝑏, 𝐷, 𝜎)! (val(𝐷), 𝜎)
if val(𝐷) is defined

Above, ⋅ denotes prepending an element or a list to a list. Intuitively, AdvanceF and
AdvanceX move deeper in the tree, generalizing cases A and B above to 𝜆fHOL terms.
Backtrack can be used to return to a previous state. Success extracts the term 𝑡 and data 𝑑
stored in an accepting node.

The following derivation illustrates how to locate a generalization of g (g a b) in the
tree 𝐷2:

3

32 Extending a Brainiac Prover to Lambda-Free Higher-Order Logic

([g (g a b)], [], 𝐷, ∅)
!AdvanceF ([g a b], [(g (g a b),𝐷,∅)], 𝐷|g, ∅)
!AdvanceX ([b], [(g a b,𝐷|g,∅),…], 𝐷|g.𝑦 , {𝑦 ↦ g a})
!AdvanceX ([], [(b,𝐷|g.𝑦 , {𝑦 ↦ g a}),…], 𝐷|g.𝑦.𝑥 , {𝑦 ↦ g a, 𝑥 ↦ b})
!Success ((g (𝑦 𝑥),𝑑), {𝑦 ↦ g a, 𝑥 ↦ b})

Let !Advance = !AdvanceF ∪!AdvanceX. It is easy to show that Backtrack undoes an
Advance transition:

Lemma 3.6. If Q !Advance Q ′, then Q ′ !Backtrack Q .

Proof. For both Advance steps, we show that Backtrack restores the state properly. If Ad-
vanceF was applied, we have(f 𝑠𝑚 ⋅ 𝑡, 𝑏, 𝐷, 𝜎)!AdvanceF (𝑠𝑚 ⋅ 𝑡, (f 𝑠𝑚,𝐷,𝜎) ⋅ 𝑏, 𝐷|f, 𝜎)

!Backtrack (𝑡′, 𝑏, 𝐷, 𝜎)
We must show that 𝑡′ = f 𝑠𝑚 ⋅ 𝑡 . Let 𝑘 = arity(f) and 𝑙 = arity(f 𝑠𝑚). By definition of 𝑘, we
have 𝑚 = 𝑘 − 𝑙, as in Backtrack’s side condition. Thus, 𝑡′ = f 𝑠𝑚 ⋅ 𝑡 . The other case is(𝑠 𝑠𝑚 ⋅ 𝑡, 𝑏, 𝐷, 𝜎)!AdvanceX (𝑠𝑚 ⋅ 𝑡, (𝑠 𝑠𝑚,𝐷,𝜎) ⋅ 𝑏, 𝐷|𝑥 , 𝜎′)

!Backtrack (𝑡′, 𝑏, 𝐷, 𝜎)
where 𝜎′ = 𝜎[𝑥 ↦ 𝑠]. Again, we must show that 𝑡′ = 𝑠 𝑠𝑚 ⋅ 𝑡 . Terms 𝑥 and 𝑠 must have the
same type for AdvanceX to be applicable; therefore, they have the same arity. Then, we
conclude 𝑚 = arity(𝑠)−arity(𝑠 𝑠𝑚) = arity(𝑥)−arity(𝑠 𝑠𝑚), as in Backtrack’s side condition.
Thus, 𝑡′ = 𝑠 𝑠𝑚 ⋅ 𝑡 . !

Lemma 3.7. If Q !Advance Q ′ !Backtrack Q ″, then Q ″ = Q .

Proof. By Lemma 3.6, Q ′ !Backtrack Q . Furthermore, Backtrack is clearly functional. Thus,
Q ″ = Q . !

Lemma 3.8. Let Q = ([𝑡], [],𝐷,∅). If Q !∗ Q ′, then Q !∗
Advance Q ′.

Proof. Let Q = Q 0 ! ⋯ ! Q 𝑛 = Q ′. Let 𝑖 be the index of the first transition of the form
Q 𝑖 !Backtrack Q 𝑖+1. Since Q 0’s backtracking stack is empty, we must have 𝑖 ≠ 0. Hence,
we have Q 𝑖−1 !Advance Q 𝑖 !Backtrack Q 𝑖+1. By Lemma 3.7, Q 𝑖−1 = Q 𝑖+1. Thus, we can
shorten the derivation to Q 0 ! ⋯ ! Q 𝑖−1 = Q 𝑖+1 ! ⋯ ! Q 𝑛 , thereby eliminating one
Backtrack transition. By repeating this process, we eliminate all Backtrack transitions. !

Lemma 3.9. There exist no infinite chains of the form Q 0 !Advance Q 1 !Advance ⋯.

Proof. With each Advance transition, the height of the discrimination tree decreases by at
least one. !

Perfect discrimination trees match a single term against a set of terms. To prove them
correct, we will connect them to the transition system ⟹ for matching (Sect. 3.4). This
connection will help us show that whenever a discrimination tree stores a generalization

3.5 Indexing Data Structures

3

33

of a query term, this generalization can be found. To express the refinement, we introduce
an intermediate transition system, ↪⟶, that focuses on a single pair of terms (like⟹) but
that solves the constraints in a depth-first, left-to-right fashion and builds the substitution
incrementally (like !). Its initial states are of the form ([𝑠 ≲? 𝑡],∅). Its transitions are as
follows:

Decompose (f 𝑠𝑚 ≲? f 𝑡𝑚 ⋅ 𝑐, 𝜎) ↪⟶ ((𝑠1 ≲? 𝑡1,… , 𝑠𝑚 ≲? 𝑡𝑚) ⋅ 𝑐,𝜎)
DecomposeX (𝑥 𝑠𝑚 ≲? 𝑢 𝑡𝑚 ⋅ 𝑐, 𝜎) ↪⟶ ((𝑠1 ≲? 𝑡1,… , 𝑠𝑚 ≲? 𝑡𝑚) ⋅ 𝑐,𝜎[𝑥 ↦ 𝑢])

if 𝑥 and 𝑢 have the same type and either 𝜎(𝑥) is undefined or 𝜎(𝑥) = 𝑢
Success ([], 𝜎) ↪⟶ 𝜎
Clash (f 𝑠𝑚 ≲? g 𝑡𝑛 ⋅ 𝑐, 𝜎) ↪⟶ ⊥
ClashTypeX (𝑥 𝑠𝑚 ≲? 𝑢 𝑡𝑚 ⋅ 𝑐, 𝜎) ↪⟶ ⊥

if 𝑥 and 𝑢 have different types
ClashLenXF (𝑥 𝑠𝑚 ≲? f 𝑡𝑛 ⋅ 𝑐, 𝜎) ↪⟶ ⊥

if 𝑚 > 𝑛
ClashLenXY (𝑥 𝑠𝑚 ≲? 𝑦 𝑡𝑛 ⋅ 𝑐, 𝜎) ↪⟶ ⊥

if 𝑥 ≠ 𝑦 and 𝑚 > 𝑛
ClashFX (f 𝑠 ≲? 𝑥 𝑡 ⋅ 𝑐, 𝜎) ↪⟶ ⊥
Double (𝑥 𝑠𝑚 ≲? 𝑢 𝑡𝑚 ⋅ 𝑐, 𝜎) ↪⟶ ⊥

if 𝑥 and 𝑢 have the same type, 𝜎(𝑥) is defined, and 𝜎(𝑥) ≠ 𝑢
We need an auxiliary function to convert ↪⟶ states to ⟹ states. Let 𝛼({𝑥1 ↦ 𝑠1,…,𝑥𝑚 ↦ 𝑠𝑚}) = {𝑥1 ≲? 𝑠1,… , 𝑥𝑚 ≲? 𝑠𝑚}, 𝛼(𝑐,𝜎) = {𝑐 ∣ 𝑐 ∈ 𝑐} ∪ 𝛼(𝜎), and 𝛼(⊥) = ⊥. Moreover,

let 𝒮 range over states of the form (𝑐,𝜎) and R additionally range over special states of
the form 𝜎 or ⊥.
Lemma 3.10. If 𝒮 ↪⟶ R , then 𝛼(𝒮) ⟹∗ 𝛼(R).
Proof. By case distinction on R . Let 𝒮 = (𝑐,𝜎).
CASE R = (𝑐′,𝜎′): Only ↪⟶Decompose and ↪⟶DecomposeX are possible. If ↪⟶Decompose is
applied, then ⟹Decompose is applicable and results in 𝛼(R). If ↪⟶DecomposeX is applied,
we have either𝑚> 0, and⟹DecomposeX is applicable, or𝑚= 0, and 𝛼(𝑐′,𝜎′) = 𝛼(𝒮), which
implies that the two states are connected by an idle transition of ⟹∗.
CASE R = ⊥: All the ↪⟶ rules resulting in ⊥ except for Double have the same side condi-
tions as the corresponding⟹ rules. ↪⟶Double corresponds to⟹Double if𝑚 = 0. If𝑚 ≠ 0,
we need an intermediate ⟹DecomposeX step before ⟹Double can be applied to derive ⊥.
Since ↪⟶Double is applicable, 𝜎(𝑥) = 𝑢′ ≠ 𝑢. Hence, 𝑥 ≲? 𝑢′ must be present in 𝛼(𝑐,𝜎).⟹DecomposeX will augment this set with 𝑥 ≲? 𝑢, enabling ⟹Double.
CASE R = 𝜎 : The only possible rule is ↪⟶Success, with 𝑐 = []. Since 𝛼(𝒮) = 𝛼(𝜎), this
transition corresponds to an idle transition of ⟹∗. !

Lemma 3.11. If 𝒮 ↪⟶! R , then R is either some substitution 𝜎′ or ⊥. If 𝒮 ↪⟶! 𝜎′, then𝜎′ is the MGG of 𝛼(𝒮). If 𝒮 ↪⟶! ⊥, then 𝛼(𝒮) has no solutions.

3

34 Extending a Brainiac Prover to Lambda-Free Higher-Order Logic

Proof. First, we show that states 𝒮 ′ = (𝑐′,𝜎′) cannot be normal forms, by exhibiting transi-
tions from such states. If 𝑐′ = [], the ↪⟶Success rule would apply. Otherwise, let 𝑐′ = 𝑐1 ⋅𝑐″
and consider the matching problem {𝑐1} ∪ 𝛼(𝜎′). If this problem is in solved form, 𝑐1 is a
constraint corresponding to a solved variable, and we can apply ↪⟶DecomposeX to move
the constraint into the substitution. Otherwise, some ⟹ rule can be applied. It nec-
essarily focuses on 𝑐1, since the constraints from 𝛼(𝜎′) correspond to solved variables.
In all cases except for ⟹DecomposeX, a homologous ↪⟶ rule can be applied to 𝒮 ′. If⟹DecomposeX would make ⟹Double applicable, then we can apply ↪⟶Double to 𝒮 ′; oth-
erwise, ↪⟶DecomposeX is applicable.

Second, by Lemma 3.10, if 𝒮 ↪⟶! 𝜎′, then 𝛼(𝒮) ⟹∗ 𝛼(𝜎′). By construction, 𝛼(𝜎′)
is in solved form. Therefore, 𝛼(𝒮) ⟹! 𝛼(𝜎′). By completeness of ⟹, the substitution
corresponding to 𝛼(𝜎′)—that is, 𝜎′—is the MGG of 𝛼(𝒮).

Third, by Lemma 3.10, if 𝒮 ↪⟶! ⊥, then 𝛼(𝒮) ⟹! ⊥. By soundness of ⟹, 𝛼(𝒮) has
no solutions. !

Lemma 3.12. The relation ↪⟶ is well founded.

Proof. By Lemma 3.10, every ↪⟶ transition corresponds to zero or more ⟹ transitions.
Since ⟹ is well founded, the only transitions that can violate well-foundedness of ↪⟶
are the ones that take idle ⟹∗ transitions: ↪⟶DecomposeX for 𝑚 = 0 and ↪⟶Success. The
latter is terminal, so it cannot contribute to infinite chains. As for ↪⟶DecomposeX, with𝑚 = 0, it decreases the following measure 𝜇, which the other rules nonstrictly decrease,
with respect to the multiset extension of < on natural numbers: 𝜇([𝑠1 ≲? 𝑡1,… , 𝑠𝑚 ≲? 𝑡𝑚],𝜎) ={|𝑠1|,… |𝑠𝑚|}, where |𝑠| denotes the syntactic size of 𝑠. !

Lemma 3.13. If term 𝑠 generalizes 𝑡 , then ([𝑠 ≲? 𝑡],∅) ↪⟶! 𝜎 , where 𝜎 is the MGG of 𝑠 ≲? 𝑡 .
Proof. By Lemma 3.12, there exists a normal form R starting from 𝒮 = ([𝑠 ≲? 𝑡],∅). Since𝑠 ≲? 𝑡 is solvable, by Lemma 3.11, and soundness of ↪⟶ (a consequence of Lemma 3.10 and
soundness of ⟹), R must be the MGG for 𝑠 and 𝑡 . !

Lemma 3.14. If there exists a term 𝑠 ∈ Term(𝐷) that generalizes the query term 𝑡 , then there
exists a derivation ([𝑡], [],𝐷,∅)!! ((𝑠,𝑑),𝜎).
Proof. By Lemma 3.13, we know that (𝑠 ≲? 𝑡,∅) ↪⟶! 𝜎 for each 𝑠 ∈ Term(𝐷) generalizing𝑡 . This means that there exists a derivation ([𝑠 ≲? 𝑡],∅) = (𝑐0,𝜎0) ↪⟶⋯ ↪⟶(𝑐𝑛,𝜎𝑛) ↪⟶𝜎 .
The 𝑛 first transitions must be Decompose or DecomposeX, and the last transition must be
Success.

We show that there exists a derivation of the form ([𝑡], [],𝐷,∅) = Q 0 ! ⋯ ! Q 𝑛 !((𝑠,𝑑),𝜎), where Q 𝑖 = (𝑡𝑖 , 𝑏𝑖 ,𝐷𝑖,𝜎𝑖) for each 𝑖. We define 𝑡𝑖 , 𝑏𝑖 , and 𝐷𝑖 as follows, for 𝑖 > 0.
The list 𝑡𝑖 consists of the right-hand sides of the constraints 𝑐𝑖 , in the same order. Let hd
be the function that extracts the head of a list. We set 𝑏𝑖 = (hd(𝑡𝑖−1),𝐷𝑖−1,𝜎𝑖−1). We know
that 𝑐𝑖−1 is nonempty, since there exists a transition (𝑐𝑖−1,𝜎𝑖−1) ↪⟶ (𝑐𝑖,𝜎𝑖); thus, 𝑡𝑖−1 is
nonempty. If an accepting node storing 𝑠 was reached in 𝑛 steps, the serialization of 𝑠
must be of the form 𝜁1.⋯.𝜁𝑛 . Take 𝐷𝑖 = 𝐷𝑖−1|𝜁𝑖 .

The sequence of states Q 𝑖 forms a derivation: If (𝑐𝑖 ,𝜎𝑖) ↪⟶Decompose (𝑐𝑖+1,𝜎𝑖+1), then
Q 𝑖 !AdvanceF Q 𝑖+1. If (𝑐𝑖 ,𝜎𝑖) ↪⟶DecomposeX (𝑐𝑖+1,𝜎𝑖+1), then Q 𝑖 !AdvanceX Q 𝑖+1. If (𝑐𝑛,𝜎𝑛) ↪⟶Success 𝜎 , then Q 𝑛 !Success ((𝑠,𝑑),𝜎). !

3.5 Indexing Data Structures

3

35

Lemma 3.15. If ([𝑡], [],𝐷,∅)!+ ((𝑠,𝑑),𝜎), then 𝑠 ∈ Term(𝐷) and 𝜎 is the MGG of 𝑠 ≲? 𝑡 .
Proof. Let ([𝑡], [],𝐷,∅) = Q 0 ! ⋯ ! Q 𝑛 ! ((𝑠,𝑑),𝜎) be a derivation, where Q 𝑖 = (𝑡𝑖 , 𝑏𝑖 ,𝐷𝑖,𝜎𝑖) for each 𝑖. Without loss of generality, by Lemma 3.8, we can assume that the deriva-
tion contains no Backtrack transitions.

The first conjunct, 𝑠 ∈ Term(𝐷), clearly holds for any term found from an initial state.
To prove the second conjunct, we first introduce a function preord that defines the preorder
decomposition of a list of terms: preord([]) = [] and preord(𝜁 𝑠𝑛 ⋅𝑥𝑠) = (𝜁 , 𝑠𝑛 ⋅𝑥𝑠)⋅preord(𝑠𝑛 ⋅𝑥𝑠). Given a term 𝑠, preord([𝑠]) gives a sequence (𝜁1,𝑢1),…, (𝜁𝑛,𝑢𝑛). Since 𝑠 ∈ Term(𝐷),
the sequence 𝐷0,…,𝐷𝑛 follows the preorder serialization of 𝑠: 𝐷𝑖 = 𝐷𝑖−1|𝜁𝑖 for 𝑖 > 0.

Next, we show that there exists a derivation of the form ([𝑠 ≲? 𝑡],∅) = 𝒮0 ↪⟶ ⋯ ↪⟶𝒮𝑛 ↪⟶ 𝜎 , where 𝒮𝑖 = (𝑐𝑖 ,𝜎𝑖). We define 𝑐𝑖 , for 𝑖 > 0, as the list of constraints whose
left-hand sides are the elements of 𝑢𝑖 and right-hand sides are the elements of 𝑡𝑖 , in the
order they appear in the respective lists. By inspecting the definition of preord and the
changes each Advance step makes to the head of 𝑡𝑖 , we can see that 𝑢𝑖 and 𝑡𝑖 have the
same length. The sequence of states 𝒮𝑖 forms a derivation: If Q 𝑖 !AdvanceF Q 𝑖+1, then𝒮𝑖 ↪⟶Decompose 𝒮𝑖+1. If Q 𝑖 !AdvanceX Q 𝑖+1, then 𝒮𝑖 ↪⟶DecomposeX 𝒮𝑖+1. If Q 𝑛 !Success𝜎 , then 𝒮𝑛 ↪⟶Success 𝜎 . !

Theorem 3.16 (Total Correctness). Let 𝐷 be a perfect discrimination tree and 𝑡 be a term.
The sets {𝑠 ∈ Term(𝐷) ∣ ∃𝜎 . 𝜎(𝑠) = 𝑡} and {𝑠 ∣ ∃𝑑,𝜎 . ([𝑡], [],𝐷,∅)!! ((𝑠,𝑑),𝜎)} are equal.

Proof. This follows from Lemmas 3.14 and 3.15. !

The theorem tells us that given a term 𝑡 , all generalizations 𝑠 stored in the perfect
discrimination tree can be found, but it does not exclude nondeterminism. Often, both
AdvanceF and AdvanceX are applicable. To find all generalizations, we need to follow both
transitions. But for some applications, it is enough to find a single generalization.

To cater for both types of applications, E provides iterators that store the state of a
traversal. After an iterator is initialized with the root node 𝐷 and the query term 𝑡 , each
call to FINDNEXTVAL will move the iterator to the next node that generalizes the query
term and stores a value, indicating an accepting node. After all such nodes have been
traversed, the iterator is set to point to Null.

The following definitions constitute the high-level interface for iterating through val-
ues incrementally or for obtaining all values of nodes that store generalizations of the
query term in 𝐷.

function INITITER(PDTNode 𝐷, Term 𝑡) is𝑖 ← ITERATOR()(𝑖.node, 𝑖.t_stack, 𝑖.t_proc, 𝑖.c_iter) ← (𝐷,[𝑡], [],Start)
return 𝑖

procedure FINDNEXTVAL(Iterator 𝑖) is
do

FINDNEXTNODE(𝑖)
while 𝑖.node ≠ Null ∧(¬𝑖.t_stack.isEmpty() ∨ ¬𝑖.node.has_val())

3

36 Extending a Brainiac Prover to Lambda-Free Higher-Order Logic

function ALLVALS(PDTNode 𝐷, Term 𝑡) is
i ← INITITER(𝐷, 𝑡)
FINDNEXTVAL(𝑖)
res ← ∅
while i.node ≠ Null do

res ← res∪ {i.node.val()}
FINDNEXTVAL(𝑖)

return res

The core functionality is implemented in FINDNEXTNODE, presented below. This pro-
cedure moves the iterator to the next node that has not been explored in the search for
generalization, or Null if the entire tree has been traversed. It first goes through all child
nodes labeledwith a variable before possibly visiting the child node labeledwith a function
symbol. The children of a node can be iterated through using a function NEXTVARCHILD
that, given a tree node and iterator through children, advances the iterator to the child
representing the next variable. Furthermore, we assume that the iterator can also be in
the distinguished states Start and End. Start indicates that no child has been visited yet;
End indicates that we have visited all children. Finally, the expression 𝑛.child(𝜁) returns
a child of the node 𝑛 labeled 𝜁 if such a child exists or Null otherwise.

procedure FINDNEXTNODE(Iterator 𝑖) is
if 𝑖.t_stack.isEmpty() then

BACKTRACKTOVAR(𝑖)
advanced ← False
while 𝑖.node ≠ Null ∧ ¬advanced do
while 𝑖.c_iter ≠ End ∧ ¬advanced do𝑖.c_iter ← NEXTVARCHILD(𝑖.node, 𝑖.c_iter)
if 𝑖.c_iter ≠ End then𝑥 ← 𝑖.c_iter.var()𝑡 ← 𝑖.t_stack.top()

s ← GOBBLEPREFIX(𝑥, 𝑡)
if s ≠ Null ∧(𝑥.binding = Null ∨ 𝑥.binding = s) then𝑖.t_stack.pop()
for 𝑗 ← 𝑡.num_args

downto s.num_args+1 do𝑖.t_stack.push(𝑡.args[𝑗])
if 𝑥.binding = Null then𝑥.binding ← s𝑖.t_proc.push((𝑡, 𝑖.node, 𝑖.c_iter,True))
else𝑖.t_proc.push((𝑡, 𝑖.node, 𝑖.c_iter,False))
i.node ← 𝑖.node.𝑐ℎ𝑖𝑙𝑑(𝑥)
advanced ← True𝑡 ← 𝑖.t_stack.top()

3.5 Indexing Data Structures

3

37

if 𝑖.c_iter = End ∧ ¬𝑡.head.isVar()∧ 𝐷.child(𝑡.head) ≠ Null then𝑖.t_stack.pop()
for 𝑗 ← 𝑡.num_args downto 1 do𝑖.t_stack.push(𝑡.args[𝑗])𝑖.t_proc.push((𝑡, 𝑖.node,End,False))
i.node ← 𝑖.node.child(𝑡.head)
advanced ← True

if ¬advanced then
BACKTRACKTOVAR(𝑖)

else𝑖.c_iter ← Start

procedure BACKTRACKTOVAR(Iterator 𝑖) is
forever do
if 𝑖.t_proc.isEmpty() then𝑖.node ← Null
return

else(𝑡,𝐷,c_iter,var_unbound) ← 𝑖.t_proc.pop()
label_arity ← 𝑖.node.label.type.arity
t_arity ← 𝑡.type.arity
for 𝑖 ← 1 to label_arity− t_arity do𝑖.t_stack.pop()𝑖.t_stack.push(𝑡)𝑖.node ← 𝐷𝑖.c_iter ← c_iter
if var_unbound then𝑖.node.label.binding ← Null
if c_iter ≠ End then
return

The pseudocode uses a slightly different representation of backtracking tuples than!.
In the AdvanceX rule, 𝜎 changes only if the variable 𝑥 was previously not bound. Instead of
creating and storing substitutions explicitly, the algorithm simply remembers whether the
variable was bound in this step or not, in the var_unbound tuple component. Then it relies
on the label 𝑥 of the current node and its binding field to carry the substitutions. Similarly,
since the strategy is to traverse the tree by first visiting the variable-labeled child nodes,
it needs to remember how far it has come with this traversal. This information is stored
in the c_iter tuple component.

3.5.2 Fingerprint Indices
Fingerprint indices [144] trade perfect indexing for a compact memory representation and
more flexible retrieval conditions. The basic idea is to compare terms by looking only at
a few predefined sample positions. If we know that term 𝑠 has symbol f at the head of the

3

38 Extending a Brainiac Prover to Lambda-Free Higher-Order Logic

subterm at 2.1 and term 𝑡 has g at the same position, we can immediately conclude that 𝑠
and 𝑡 are not unifiable.

Let A (“at a variable”), B (“below a variable”), and N (“nonexistent”) be distinguished
symbols not present in the signature, and let 𝑞 < 𝑝 denote that position 𝑞 is a proper prefix
of 𝑝 (e.g., 𝜀 < 2 < 2.1). Given a term 𝑡 and a position 𝑝, the fingerprint function Gfpf is
defined as

Gfpf(𝑡,𝑝) = ⎧⎪⎨⎪⎩
f if 𝑡|𝑝 has a symbol head f
A if 𝑡|𝑝 is a variable
B if 𝑡|𝑞 is a variable for some 𝑞 < 𝑝
N otherwise

Based on a fixed tuple of positions 𝑝𝑛 , the fingerprint of a term 𝑡 is defined as Fp(𝑡) =(Gfpf(𝑡,𝑝1),…,Gfpf(𝑡,𝑝𝑛)). To compare two terms 𝑠 and 𝑡 , it suffices to check that their
fingerprints are componentwise compatible using the following unification and matching
matrices, respectively:

f1 f2 A B N
f1 ! !
f2 ! !
A !
B
N ! ! !

f1 f2 A B N
f1 ! ! ! !
f2 ! ! ! !
A ! !
B
N ! ! ! !

The rows and columns correspond to 𝑠 and 𝑡 , respectively. The metavariables f1 and f2
represent arbitrary distinct symbols. Incompatibility is indicated by !.

As an example, let (𝜀,1,2,1.1,1.2,2.1,2.2) be the sample positions, and let 𝑠 = f(a, 𝑥)
and 𝑡 = f(g(𝑥),g(a)) be the terms to unify. Their fingerprints are Fp(𝑠) = (f,a,A,N,N,B,B)
and Fp(𝑡) = (f,g,g,A,N,a,N). Using the left matrix, we compute the compatibility vector(–,!,–,!,–,–,–). The mismatches at positions 1 and 1.1 indicate that 𝑠 and 𝑡 are not unifi-
able.

A fingerprint index is a trie that stores a term set 𝑇 keyed by fingerprint. The term
f(g(𝑥),g(a)) above would be stored in the node addressed by f.g.g.A.N.a.N, together with
other terms that share the same fingerprint. This scheme makes it possible to unify or
match a query term 𝑠 against all the terms 𝑇 in one traversal. Once a node storing the
terms 𝑈 ⊆ 𝑇 has been reached, due to overapproximation we must apply unification or
matching on 𝑠 and each 𝑢 ∈ 𝑈 .

When adapting this data structure to 𝜆fHOL, we must first choose a suitable notion of
position in a term. Conventionally, higher-order positions are strings over {1,2}, but this is
not graceful. Instead, it is preferable to generalize the first-order notion to flattened 𝜆fHOL
terms—e.g., 𝑥 ab |1 = a and 𝑥 ab |2 = b.However, this approach fails on applied variables. For
example, although 𝑥 b and f a b are unifiable (using {𝑥 ↦ f a}), sampling position 1 would
yield a clash between b and a. To ensure that positions remain stable under substitution,
we propose to number arguments in reverse: 𝑡|𝜀 = 𝑡 and 𝜁 𝑡𝑛 … 𝑡1|𝑖.𝑝 = 𝑡𝑖 |𝑝 if 1 ≤ 𝑖 ≤ 𝑛. We
use a nonstandard notation, 𝑡|𝑝 , for this nonstandard notion. The operation is undefined
for out-of-bound indices.

3.5 Indexing Data Structures

3

39

Lemma 3.17. Let 𝑠 and 𝑡 be unifiable terms, and let 𝑝 be a position such that the subterms𝑠|𝑝 and 𝑡|𝑝 are defined. Then 𝑠|𝑝 and 𝑡|𝑝 are unifiable.

Proof. By structural induction on 𝑝. The case 𝑝 = 𝜀 is trivial.

CASE 𝑝 = 𝑞.𝑖: Let 𝑠|𝑞 = 𝜁 𝑠𝑚 … 𝑠1 and 𝑡|𝑞 = 𝜂 𝑡𝑛 … 𝑡1. Since 𝑝 is defined in both 𝑠 and 𝑡 , we
have 𝑠|𝑝 = 𝑠𝑖 and 𝑡|𝑝 = 𝑡𝑖 . By the induction hypothesis, 𝑠|𝑞 and 𝑡|𝑞 are unifiable, meaning
that there exists a substitution 𝜎 such that 𝜎(𝜁 𝑠𝑚 … 𝑠1) = 𝜎(𝜂 𝑡𝑛 … 𝑡1). Hence, 𝜎(𝑠1) = 𝜎(𝑡1),
…, 𝜎(𝑠𝑖) = 𝜎(𝑡𝑖)—i.e., 𝜎(𝑠|𝑝) = 𝜎(𝑡|𝑝). !

Let 𝑡⟨𝑝 denote the subterm 𝑡|𝑞 such that 𝑞 is the longest prefix of 𝑝 for which 𝑡|𝑞 is
defined. The 𝜆fHOL version of the fingerprint function is defined as follows:

Gfpf ′(𝑡,𝑝) = ⎧⎪⎪⎨⎪⎪⎩
f if 𝑡|𝑝 has a symbol head f
A if 𝑡|𝑝 has a variable head
B if 𝑡|𝑝 is undefined

but 𝑡⟨𝑝 has a variable head
N otherwise

Except for the reversed numbering scheme, Gfpf ′ coincides with Gfpf on first-order terms.
The fingerprint Fp′(𝑡) of a term 𝑡 is defined analogously as before, and the same compati-
bility matrices can be used.

The key difference between Gfpf and Gfpf ′ concerns applied variables. Given the
sample positions (𝜀,2,1), the fingerprint of 𝑥 is (A,B,B) as before, whereas the fingerprint
of 𝑥 c is (A,B,c). As another example, let (𝜀,2,1,2.2,2.1,1.2,1.1) be the sample positions,
and let 𝑠 = 𝑥 (f b c) and 𝑡 = g a (𝑦 d). Their fingerprints are Fp′(𝑠) = (A,B, f,B,B,b,c) and
Fp′(𝑡) = (g,a,A,N,N,B,d). The terms are not unifiable due to the incompatibility at position
1.1 (c vs. d).

We can easily support prefix optimization for both terms 𝑠 and 𝑡 being compared: We
simply add enough fresh variables as arguments to ensure that 𝑠 and 𝑡 are fully applied
before computing their fingerprints.

Lemma 3.18. If terms 𝑠 and 𝑡 are unifiable, then Gfpf ′(𝑠,𝑝) and Gfpf ′(𝑡,𝑝) are compatible
according to the unification matrix. If 𝑠 generalizes 𝑡 , then Gfpf ′(𝑠,𝑝) and Gfpf ′(𝑡,𝑝) are
compatible according to the matching matrix.

Proof. We focus on the case of unification. By contraposition, it suffices to consider the
eight blank cells in the unification matrix, where the rows correspond to Gfpf ′(𝑠,𝑝) and
the columns correspond to Gfpf ′(𝑡,𝑝). Since unifiability is a symmetric relation, we can
rule out four cases.

CASE f1–f2: By definition of Gfpf ′, 𝑠|𝑝 and 𝑡|𝑝 must be of the forms f1 𝑠 and f2 𝑡 , respectively.
Clearly, 𝑠|𝑝 and 𝑡|𝑝 are not unifiable. By Lemma 3.17, 𝑠 and 𝑡 are not unifiable.

CASE f1–N, f2–N, OR A–N: From Gfpf ′(𝑡,𝑝) = N, we deduce that 𝑝 ≠ 𝜀. Let 𝑝 = 𝑞.𝑖.𝑟 , where𝑞 is the longest prefix such that Gfpf ′(𝑡,𝑞) ≠ N. Since Gfpf ′(𝑡,𝑞.𝑖) = N, the head of 𝑡|𝑞 must
be some symbol g. (For a variable head, we would have Gfpf ′(𝑡,𝑞.𝑖) = B.) Hence, 𝑡|𝑞 has
the form g 𝑡𝑛 … 𝑡1, for 𝑛 < 𝑖. Since 𝑞.𝑖 is a legal position in 𝑠, 𝑠|𝑞 has the form 𝜁 𝑠𝑚 … 𝑠1,

3

40 Extending a Brainiac Prover to Lambda-Free Higher-Order Logic

with 𝑖 ≤ 𝑚. A necessary condition for 𝜎(𝑠|𝑞) = 𝜎(𝑡|𝑞) is that 𝜎(𝜁 𝑠𝑚 … 𝑠𝑛+1) = 𝜎(g), but
this is impossible because the left-hand side is an application (since 𝑛 < 𝑚), whereas the
right-hand side is the symbol g. By Lemma 3.17, 𝑠 and 𝑡 are not unifiable. !

Corollary 3.19 (Overapproximation). If 𝑠 and 𝑡 are unifiable terms, then Fp′(𝑠) and Fp′(𝑡)
are compatible according to the unification matrix. If 𝑠 generalizes 𝑡 , then Fp′(𝑠) and Fp′(𝑡)
are compatible according to the matching matrix.

3.6 Inference Rules
Saturating provers show the unsatisfiability of a clause set by systematically adding log-
ical consequences, eventually deriving the empty clause as a witness of unsatisfiability.
They implement two kinds of inference rules: Generating rules produce new clauses and
are needed for completeness, whereas simplification rules delete existing clauses or replace
them by simpler clauses. This simplification is crucial for success, and most modern pro-
vers spend a large part of their time on simplification. E’s main loop, which applies the
rules, implements the given clause procedure, as described in Sect. 2.5.5.

Ehoh is based on the same logical calculus as E, except that it is generalized to 𝜆fHOL
terms. The standard inference rules and completeness proof of superposition with respect
to intensional Boolean-free 𝜆fHOL fragment of our logic can be reused verbatim; the only
changes concern the basic definitions of terms and substitutions [15, Sect. 1]. Refutational
completeness of superposition for 𝜆fHOL terms has been formally proved by Peltier [132]
using Isabelle. We introduced support for first-class Boolean terms in Ehoh by extending
the preprocessor, as explained in Sect. 3.8.

The Generating Rules The rules of the superposition calculus were introduced in
Sect. 2.5.3. For completeness, we repeat them with slightly simplified notation, as we
do not repeat side conditions:𝑠 ≈ 𝑡 ∨ 𝐶 𝑢[𝑠′] ≉ 𝑣 ∨ 𝐷

SN𝜎(𝑢[𝑡] ≉ 𝑣 ∨ 𝐶 ∨ 𝐷) 𝑠 ≉ 𝑠′ ∨ 𝐶
ER𝜎(𝐶)𝑠 ≈ 𝑡 ∨ 𝐶 𝑢[𝑠′] ≈ 𝑣 ∨ 𝐷

SP𝜎(𝑢[𝑡] ≈ 𝑣 ∨ 𝐶 ∨ 𝐷) 𝑠 ≈ 𝑡 ∨ 𝑠′ ≈ 𝑢 ∨ 𝐶
EF𝜎(𝑡 ≉ 𝑢 ∨ 𝑠 ≈ 𝑢 ∨ 𝐶)

In each rule, 𝜎 denotes the MGU of 𝑠 and 𝑠′.
Equality resolution (ER) and equality factoring (EF) are single-premise rules that work

on the entire left- or right-hand side of a literal of the given clause. To generalize them, it
suffices to disable prefix optimization for unification.

The rules for superposition into negative and positive literals (SN and SP) are more
complex. As two-premise rules, they require the prover to find a partner for the given
clause. There are two cases to consider, depending on whether the given clause acts as
the first or second premise in an inference. Moreover, since the rules operate on sub-
terms 𝑠′ of a clause, the prover must be able to efficiently locate all relevant subterms,
including 𝜆fHOL prefix subterms. To cover the case where the given clause acts as the left
premise, the prover relies on a fingerprint index to compute a set of clauses containing

3.6 Inference Rules

3

41

terms possibly unifiable with a side 𝑠 of a positive literal of the given clause. Thanks to
our generalization of fingerprints, in Ehoh this candidate set is guaranteed to overapprox-
imate the set of all possible inference partners. The unification algorithm is then applied
to filter out unsuitable candidates. Thanks to prefix optimization, we can avoid polluting
the index with all prefix subterms.

When the given clause is the right premise, the prover traverses its subterms 𝑠′ looking
for inference partners in another fingerprint index, which contains only entire left- and
right-hand sides of equalities. Like E, Ehoh traverses subterms in a first-order fashion. If
prefix unification succeeds, Ehoh determines the unified prefix and applies the appropriate
inference instance.

The Simplifying Rules Unlike generating rules, simplifying rules do not necessarily
add conclusions to the proof state—they can also remove premises. E implements over a
dozen simplifying rules, with unconditional rewriting and clause subsumption as the most
significant examples. Here, we restrict our attention to a single rule, which best illustrates
the challenges of supporting 𝜆fHOL:𝑠 ≈ 𝑡 𝑢[𝜎(𝑠)] ≈ 𝑢[𝜎(𝑡)] ∨ 𝐶

ES𝑠 ≈ 𝑡
Given an equation 𝑠 ≈ 𝑡 , equality subsumption (ES) removes a clause containing a literal
whose two sides are equal except that an instance of 𝑠 appears on one side where the
corresponding instance of 𝑡 appears on the other side.

E maintains a perfect discrimination tree storing clauses of the form 𝑠 ≈ 𝑡 indexed by𝑠 and 𝑡 . When applying ES, E considers each positive literal 𝑢 ≈ 𝑣 of the given clause in
turn. It starts by taking the left-hand side 𝑢 as a query term. If an equation 𝑠 ≈ 𝑡 (or 𝑡 ≈ 𝑠)
is found in the tree, with 𝜎(𝑠) = 𝑢, the prover checks whether 𝜎′(𝑡) = 𝑣 for some (possibly
nonstrict) extension 𝜎′ of 𝜎 . If so, ES is applicable, with a second premise of the form𝜎(𝑠) ≈ 𝜎(𝑡) ∨ 𝐶 .

To consider nonempty contexts, the prover traverses the subterms 𝑢′ and 𝑣′ of 𝑢 and 𝑣
in lockstep, as long as they appear under identical contexts. Thanks to prefix optimization,
when Ehoh is given a subterm 𝑢′, it can find an equation 𝑠 ≈ 𝑡 in the tree such that 𝜎(𝑠)
is equal to some prefix of 𝑢′, with some arguments 𝑢 remaining as unmatched. Checking
for equality subsumption then amounts to checking that 𝑣′ = 𝜎′(𝑡) 𝑢, for some extension𝜎′ of 𝜎 .

For example, let f (g a b) ≈ f (h g b) be the given clause, and suppose that 𝑥 a ≈ h 𝑥
is indexed. Under context f [], Ehoh considers the subterms g a b and h g b. It finds the
prefix g a of g a b in the tree, with 𝜎 = {𝑥 ↦ g}. The prefix h g of h g bmatches the indexed
equation’s right-hand side h 𝑥 using the same substitution, and the remaining argument
in both subterms, b, is identical. Ehoh concludes that the given clause is redundant.

Pragmatic Extensions Since Ehoh is based on a monomorphic logic, the only way to
support extensionality without changing the calculus is to add a set of extensionality ax-
ioms for every function type occurring in the problem [15, Sect. 3.1]. The evaluation by

3

42 Extending a Brainiac Prover to Lambda-Free Higher-Order Logic

Bentkamp et al. of such an approach was discouraging [15, Sect. 6], so we decided to sup-
port extensionality via inference rules in Ehoh. We implemented two well-known incom-
plete rules my colleagues and me had experimented with in the context of Zipperposition.

The negative and positive extensionality (NE and PE) rules are defined as𝑠 ≉ 𝑡 ∨ 𝐶
NE𝑠 (sk 𝑥) ≉ 𝑡 (sk 𝑥) ∨ 𝐶 𝑠 𝑥 ≈ 𝑡 𝑥 ∨ 𝐶

PE𝑠 ≈ 𝑡 ∨ 𝐶
For NE, 𝑥 contains all the variables occurring in 𝑠 and 𝑡 , the terms 𝑠 and 𝑡 are of function
type, sk is a fresh Skolem symbol, and the literal 𝑠 ≉ 𝑡 is eligible for resolution [18, Sect. 5].
For PE, variable 𝑥 does not occur in any of the 𝑠, 𝑡 , or 𝐶 , no literals are selected in 𝐶 , and𝑠 𝑥 ≈ 𝑡 𝑥 is a maximal literal.

Finally, we introduced an injectivity recognition (IR) rule, which detects injectivity
axioms and asserts the existence of the inverse function for injective function symbols:

f 𝑥𝑛 ≉ f 𝑦𝑛 ∨ 𝑥𝑖 ≈ 𝑦𝑖 IR
sk (f 𝑥𝑛) 𝑥𝐽 ≈ 𝑥𝑖

where sk is a fresh Skolem symbol, and 𝐽 is the largest subset of {1,…,𝑛} such that 𝑥𝑗 = 𝑦𝑗
for every 𝑗 ∈ 𝐽 . We denote the subsequence of 𝑥𝑛 indexed by 𝐽 by 𝑥𝐽 . Moreover, we require
that 𝑥𝑖 ≠ 𝑦𝑖 , all variables in 𝑥𝐾 ⋅𝑦𝐾 are distinct, where 𝐾 = {1,…,𝑛}⧵ 𝐽 , and neither 𝑥𝐾 nor𝑦𝐾 shares variables with 𝑥𝐽 . For example, given add 𝑎 𝑏 ≉ add 𝑎 𝑏′ ∨ 𝑏 ≈ 𝑏′, IR can derive
the existence of the inverse sk1 characterized by sk1 (add 𝑎 𝑏) 𝑎 ≈ 𝑏.
3.7 Heuristics
E’s heuristics are largely independent of the logic used, andwork unchanged for Ehoh. Yet,
in preliminary experiments, we noticed that E proved some 𝜆fHOL benchmarks quickly us-
ing the applicative encoding (Sect. 3.1), whereas Ehoh timed out. There were enough such
problems to prompt us to take a closer look. Based on these observations, we extended
the heuristics to exploit 𝜆fHOL-specific features.

TermOrder Generation The superposition calculus is parameterized by a term order—
typically an instance of KBO or LPO (Sect. 2.5.1). E can generate a symbol weight function
(for KBO) and a symbol precedence (for KBO and LPO) based on criteria such as the symbols’
frequencies, their arities, and whether they appear in the conjecture.

In preliminary experiments, we discovered that the presence of an explicit application
operator @ can be beneficial for some problems. Let a ∶ 𝜄1, b ∶ 𝜄2, c ∶ 𝜄3, f ∶ 𝜄1 → 𝜄2 → 𝜄3,𝑥 ∶ 𝜄2 → 𝜄3, 𝑦 ∶ 𝜄2, and 𝑧 ∶ 𝜄3, and consider the clauses f a 𝑦 ≉ c and 𝑥 b ≈ 𝑧, where the first
one is the negated conjecture. Their applicative encoding is@𝜄2,𝜄3 (@𝜄1,𝜄2→𝜄3(f,a),𝑦) ≉ c and@𝜄2,𝜄3 (𝑥,b) ≈ 𝑧, where @𝜏,𝜐 is a type-indexed family of symbols representing the applica-
tion of a function of type 𝜏 → 𝜐. With the applicative encoding, generation schemes can
take the symbols @𝜏,𝜐 into account, thereby exploiting the type information carried by
such symbols. Since @𝜄2,𝜄3 is a conjecture symbol, some weight generation scheme could
give it a low weight, which would also impact the second clause. By contrast, the native

3.7 Heuristics

3

43

𝜆fHOL clauses share no symbols; the connection between them is hidden in the types of
variables and symbols that are ignored by the heuristics.

To simulate the behavior observed on applicative problems, we introduced four gener-
ation schemes that extend E’s existing symbol-frequency-based schemes by partitioning
the symbols by type. To each symbol, the new schemes assign a frequency equal to the
sum of all symbol frequencies for its class. Each new scheme is inspired by a similarly
named type-agnostic scheme in E, without type in its name:

• typefreqcount assigns as each symbol’s weight the number of occurrences of sym-
bols of the same type.

• typefreqrank sorts the frequencies calculated by the function typefreqcount in in-
creasing order and assigns each symbol a weight corresponding to its rank.

• invtypefreqcount is typefreqcount’s inverse. If typefreqcount would assign a
weight 𝑤 to a symbol, it assigns 𝑀 −𝑤+1, where𝑀 is the maximum symbol weight
according to typefreqcount.

• invtypefreqrank is typefreqrank’s inverse. It sorts the frequencies in decreasing
order.

We designed four more schemes (whose names begin with comb instead of type) that
combine E’s type-agnostic and Ehoh’s type-aware approaches using a linear equation.

To generate symbol precedences, E can sort symbols by weight and use the symbol’s
position in the sorted array as the basis for precedence. To reflect the type information
introduced by the applicative encoding, we implemented four type-aware precedence gen-
eration schemes. Ties are broken by comparing the symbols’ number of occurrences and,
if necessary, the position of their first occurrence in the input.

Literal Selection The side conditions of the superposition rules SN and SP (Sect. 2.5.3)
rely on a literal selection function to restrict the set of inference literals, thereby reducing
the search space. Given a clause, a literal selection function returns a (possibly empty)
subset of its literals. For completeness, any nonempty subset selected must contain at least
one negative literal. If no literal is selected, all maximal literals become inference literals.
The selection function E uses most often is probably SelectMaxLComplexAvoidPosPred,
which we abbreviate to SelectMLCAPP. It selects at most one negative literal, based on size,
absence of variables, and maximality of the literal in the clause.

Intuitively, applied variables can potentially be unified with more terms than terms
with rigid heads. This makes them prolific in terms of possible inference partners, a be-
havior that can lead to creating many unnecessary clauses and should thus be avoided.
On the other hand, shorter proofs might be found if we prefer selecting applied variables.
To cover both scenarios, we implemented selection functions that prefer or defer selecting
applied variables.

Let max(𝐿) = 1 if 𝐿 is a maximal literal of the clause it appears in; otherwise, max(𝐿) =0. Let appvar(L) = 1 if 𝐿 is a literal where either side is an applied variable; otherwise,
appvar(L) = 0. Based on these definitions, we devised the following selection functions,
both of which rely on SelectMLCAPP to break ties:

3

44 Extending a Brainiac Prover to Lambda-Free Higher-Order Logic

• SelectMLCAPPAvoidAppVar selects a negative literal 𝐿 with the maximal value of(max(𝐿), 1−appvar(𝐿)) according to the lexicographic order.

• SelectMLCAPPPreferAppVar selects a negative literal 𝐿 with the maximal value of(max(𝐿), appvar(𝐿)) according to the lexicographic order.

Clause Selection Selection of the given clause is a critical choice point. E heuristically
assigns clause priorities and clause weights to the candidates. The priorities provide a crude
partition, whereas the weights order the clauses within a partition. E’s main loop visits
a set of priority queues in round-robin fashion. From a given queue, the clause with the
highest priority and the smallest weight is selected. Typically, one of the queues will
use the clauses’ age as priority, to ensure fairness (i.e., that each nonredundant clause is
eventually chosen).

E provides template weight functions that allow users to fine-tune parameters such
as weights assigned to variables or function symbols. The most widely used template is
ConjectureRelativeSymbolWeight, which we abbreviate to CRSWeight. It computes term
and clause weights according to eight parameters, notably conj_mul, a multiplier applied
to the weight of conjecture symbols. This template works well for some applicatively
encoded problems. Let a ∶ 𝜄, f ∶ 𝜄 → 𝜄, 𝑥 ∶ 𝜄, and 𝑦 ∶ 𝜄 → 𝜄, and consider the clauses 𝑦 𝑥 ≉ 𝑥
and f a ≈ a, where the first one is the negated conjecture. Their encoding is @𝜄,𝜄(𝑦,𝑥) ≉ 𝑥
and @𝜄,𝜄(f,a) ≈ a. The encoded clauses share @𝜄,𝜄 , whose weight will be multiplied by
conj_mul—usually a factor in the interval (0,1). By contrast, the native 𝜆fHOL clauses
share no symbols, and the heuristic would fail to notice that f and 𝑦 have the same type,
giving a higher weight to the second clause. To mitigate this, we coded a new type-aware
template, CRSTypeWeight, that applies the conj_mul multiplier to all symbols whose type
occurs in the conjecture. For the example above, since 𝜄 → 𝜄 appears in the conjecture, it
would notice the relation between the conjecture variable 𝑦 and the symbol f and multiply
f’s weight by conj_mul.

Natively supporting 𝜆fHOL allows the prover to recognize applied variables. It may
make sense to extend clause weight templates to either penalize or promote clauses with
such variables. To support this extension, we added the following parameter to CRSType-
Weight, as well as to some other E’s weight function templates: appv_mul is a multiplier
applied to terms 𝑠 = 𝑥 𝑡𝑛 , where 𝑠 is either side of the literal and 𝑛 > 0. In addition, we
implemented a new clause priority scheme, ByAppVarNum, that separates the clauses by the
number of top-level applied variables occurring in the clause, favoring those containing
fewer such variables.

Configurations andModes A combination of parameters, including term order, literal
selection, and clause selection, is called a configuration. For years, E has provided an auto
mode that analyzes the input problem and chooses a configuration known to perform
well on similar problems. More recently, E has been extended with an autoschedule mode
that applies a portfolio of configurations in sequence on the given problem, restarting the
prover for each configuration.

3.8 Preprocessing

3

45

Configurations that are suitable for a wide range of problems have emerged over time.
One of them is the configuration that is most often chosen by E’s auto mode when running
on TPTP benchmarks. We call it boa (“best of auto”):

Term order: KBO

Weight generation: invfreqrank

Precedence generation: invfreq

Literal selection: SelectMLCAPP

Clause selection:
1.CRSWeight(SimulateSOS, 0.5, 100, 100, 100, 100, 1.5, 1.5, 1),
4.CRSWeight(ConstPrio, 0.1, 100, 100, 100, 100, 1.5, 1.5, 1.5),
1.FIFOWeight(PreferProcessed),
1.CRSWeight(PreferNonGoals, 0.5, 100, 100, 100, 100, 1.5, 1.5, 1),
4.Refinedweight(SimulateSOS, 3, 2, 2, 1.5, 2)

The clause selection scheme consists of five queues, each of which is specified by a weight
function template. The prefixes 𝑛. next to the template names indicate that the queue
will be visited 𝑛 times in the round-robin scheme before moving to the next one. The first
argument to each template is the clause priority scheme.

3.8 Preprocessing
E’s preprocessor transforms first-order formulas into clausal normal form, before the main
loop is started. As explained in Sect. 2.4, E also encodes all literals as equations. Beyond
turning the problem into a conjunction of disjunctive clauses, the preprocessor eliminates
quantifiers, introducing Skolem symbols for essentially existential quantifiers.

For first-order logic, skolemization preserves both satisfiability (unprovability) and
unsatisfiability (provability). In contrast, for higher-order logics without the axiom of
choice, naive skolemization is unsound, because it introduces symbols that can be used
to instantiate higher-order variables. One solution proposed by Miller [119, Sect. 6] is
to ensure that Skolem symbols are always applied to a minimal number of arguments.
However, to keep the implementation simple, we have decided to ignore this issue and
consider all arguments as optional, including those to Skolem symbols. In Chapter 7 we
extend Ehoh’s logic to full higher-order logic with the axiom of choice, which addresses
the issue.

There is another transformation performed by preprocessing that is problematic, but
for a different reason. Definition unfolding is the process of replacing equationally de-
fined symbols with their definitions and removing the defining equations. A definition is
a clause of the form f 𝑥𝑚 ≈ 𝑡 , where the variables 𝑥𝑚 are distinct, f does not occur in the
right-hand side 𝑡 , and Var(𝑡) ⊆ {𝑥1,…,𝑥𝑚}. This transformation preserves unsatisfiability
(provability) for first- and higher-order logic, but not for 𝜆fHOL, making Ehoh incomplete.
The reason is that by removing the definitional clause, we also remove a symbol f that oth-
erwise could be used to instantiate a higher-order quantifier. For example, the clause set

3

46 Extending a Brainiac Prover to Lambda-Free Higher-Order Logic

{f 𝑥 ≈ 𝑥, f (𝑦 a) ≉ a} is unsatisfiable, whereas {𝑦 a ≉ a} is satisfiable in 𝜆fHOL. (In full higher-
order logic, the second clause set would be unsatisfiable thanks to the {𝑦 ↦𝜆𝑥. 𝑥} instance
and 𝛽-reduction.) For the moment, we have simply disabled definition unfolding in Ehoh.
We have not measured the effect of this choice, but we conjecture it is not substantial.
Appropriately chosen term order will result in a similar outcome without removing the
defined symbol. We will enable definition unfolding again once we have added support
for 𝜆-terms (Chapter 7).

Higher-order logic treats formulas as terms of Boolean type, erasing the distinction
between terms and formulas. As a consequence, formulas might appear as arguments not
only to logical connectives but also to function symbols or applied variables—e.g., p (a∧∧∧b),𝑦 (¬¬¬ a). We call such formulas nested. Kotelnikov et al. [98] describe a modification to
Vampire’s clausification algorithm to support nested formulas. We adapt their approach
to the clausification algorithm [126] used by E. Given a formula 𝜑 to clausify, the following
procedure removes nested formulas:

1. Let 𝜒 = 𝜑|𝑝 be the leftmost outermost nested formula that is different from⊤⊤⊤,⊥⊥⊥, or a
variable 𝑥 , if one exists; otherwise, skip to step 2. Let 𝑝 = 𝑞.𝑟 where 𝑞 is the longest
strict prefix of 𝑝 such that 𝜓 = 𝜑|𝑞 is a formula. Let 𝜓′ = (𝜒 →→→ 𝜓[⊤⊤⊤]𝑟) ∧∧∧ (¬¬¬𝜒 →→→𝜓[⊥⊥⊥]𝑟). Replace 𝜑 by 𝜑[𝜓′]𝑞 and repeat this step.

2. Apply all the steps of E’s clausification algorithm up to and including skolemization.

3. Skolemization might replace Boolean variables by new terms with predicate symbol
heads. To remove them, follow step 1.

4. Perform the remaining steps of E’s clausification algorithm, resulting in a set of
clauses.

5. Let 𝐶 be a clause that contains a literal 𝐿 of the form 𝑥 ≈ ⊤⊤⊤ or 𝑥 ≉ ⊤⊤⊤, where 𝑥 is
a Boolean variable, if one exists; otherwise, terminate. Delete 𝐶 if it also contains
the complement of 𝐿. Otherwise, replace 𝐶 with the clause 𝐶[𝑥 ↦⊥⊥⊥] if 𝐿 is of the
form 𝑥 ≈⊤⊤⊤ and else 𝐶[𝑥 ↦⊤⊤⊤]. Trivial literals⊥⊥⊥ ≈⊤⊤⊤ and⊤⊤⊤ ≉⊤⊤⊤ are removed from the
resulting clause. Repeat this step.

As an example, consider the formula f 𝑥 ≈≈≈ 𝑥 →→→ p (a∧∧∧ b). Step 1 moves the subterm
a∧∧∧b outward, yielding f 𝑥 ≈≈≈ 𝑥 →→→ ((a∧∧∧b)→→→ p⊤⊤⊤) ∧∧∧ (¬¬¬ (a∧∧∧b)→→→ p⊥⊥⊥). This formula can be
clausified further as usual.

Theorem 3.20 (Total Correctness). The above procedure always terminates and produces
a set of clauses that is equisatisfiable with the original formula 𝜑 in 𝜆fHOL with interpreted
Booleans and that contains no nested formulas other than ⊤⊤⊤, ⊥⊥⊥, and variables.

Proof. It is easy to see that steps 1, 3, and 5 produce equivalent formulas or clauses. More-
over, steps 1 and 3 remove all offending nested formulas (i.e., other than ⊤⊤⊤, ⊥⊥⊥, and vari-
ables). In conjunction with the standard clausification algorithm, which preserves and
reflects satisfiability, our procedure gives correct results when it terminates.

To prove termination, we will use a measure function W to natural numbers that de-
creases with each application of step 1 or 3. Steps 2 and 4 rely on a terminating algo-
rithm, whereas each application of step 5 decreases the size of a clause. We define W by

3.9 Evaluation

3

47

W (∀𝑥. 𝑠) = W (∃𝑥. 𝑠) = W (𝑠); W (𝜁 𝑠𝑛) = ∑𝑛𝑖=1 W (𝑠𝑖) if 𝜁 is a logical connective (including⊤⊤⊤
and ⊥⊥⊥); and W (𝜁 𝑠𝑛) = 3𝑘(1 +∑𝑛𝑖=1 W (𝑠𝑖)) otherwise, where 𝑘 is the number of offending
outermost nested formulas in 𝜁 𝑠𝑛 . We must show W (𝜓) > W (𝜓 ′). By definition, 𝜓 is of
the form 𝜁 𝑠𝑛 , where 𝜁 is not a logical connective. Thus W (𝜓) = 3𝑘(1+∑𝑛𝑖=1 W (𝑠𝑖)). Steps
1 and 3 substitute ⊤⊤⊤ or ⊥⊥⊥, of measure 0, for a nested formula 𝜒 (including 𝜒 ’s own nested
formulas) in 𝜓 . Clearly, the longer 𝑟 is, the more W (𝜓 ′) decreases. Taking |𝑟 | = 1, we get
the upper bound 2W (𝜒) + 2 ⋅ 3𝑘−1(1 +∑𝑛𝑖=1 W (𝑠𝑖) − W (𝜒)) for W (𝜓 ′), which is less than
W (𝜓) = 3𝑘(1+∑𝑛𝑖=1 W (𝑠𝑖)). !

The output may contain ⊤⊤⊤, ⊥⊥⊥, or Boolean variables as nested formulas. Since E was
first developed as an untyped prover, unification of a variable with a Boolean constant was
disallowed to avoid unsoundness. We needed to undo this in Ehoh. Ehoh also removes
trivial literals ⊥⊥⊥ ≈⊤⊤⊤ and ⊤⊤⊤ ≉⊤⊤⊤ that emerge during proof search.

3.9 Evaluation
How useful are Ehoh’s new heuristics? And how does Ehoh perform compared with E,
used directly or in tandem with the applicative encoding, and compared with other pro-
vers? To answer the first question, we evaluated each new heuristic scheme independently.
From the empirical results, we derived a new configuration optimized for 𝜆fHOL. For the
second question, we compared Ehoh’s success rate and speed on 𝜆fHOL problems with na-
tive higher-order provers and on applicatively encoded problems with E. We also included
first-order benchmarks to measure Ehoh’s overhead.

We set a CPU time limit of 60 s per problem. This is more than allotted by interactive
proof tools such as Sledgehammer, or by cooperative provers such as Leo-III and Satallax,
but less than the 300 s of CASC [159]. The experiments were performed on StarExec [154]
nodes equipped with Intel Xeon E5-2609 0 CPUs clocked at 2.40GHz.

Heuristics Tuning We used the boa configuration as the basis to evaluate the new
heuristic schemes. For each heuristic parameter we tuned, we changed only its valuewhile
keeping the other parameters the same as for boa. This gave an idea of how each parame-
ter affected overall performance. All heuristic parameters were tested on a 5012 problem
suite generated using Sledgehammer, consisting of four variants of the Judgment Day [34]
suite. The problems were given in native 𝜆fHOL syntax. The experiments described in this
subsection were carried out using an earlier E version (2.3).

Evaluating the new weight and precedence generation heuristics amounted to test-
ing each possible combination of frequency-based schemes, including E’s original type-
agnostic schemes. Figure 3.1 shows the number of solved (i.e., proved or disproved) prob-
lems for each combination. In this and the following figures, the underlined number is for
boa, whereas bold singles out the best value. In the names of the generation schemes, we
abbreviated inv to i, type to t, freq to f, comb to cm, count to cn, and rank to r.

Figure 3.1 indicates that including type information in the generation schemes re-
sults in a somewhat higher number of solved problems compared with E’s type-agnostic
schemes. Against our expectations, Ehoh’s combined schemes appear to be less efficient
than the type-aware schemes.

3

48 Extending a Brainiac Prover to Lambda-Free Higher-Order Logic

f if tf itf cmf icmf

fcn 2294 2288 2287 2297 2290 2287
ifcn 2371 2373 2374 2370 2369 2377
fr 2326 2317 2323 2329 2322 2318
ifr 2383 2379 2376 2380 2381 2381
tfcn 2305 2314 2301 2306 2302 2311
itfcn 2386 2381 2389 2388 2384 2379
tfr 2326 2334 2322 2334 2321 2336
itfr 2390 2382 2390 2394 2387 2386
cmfcn 2273 2281 2271 2285 2269 2280
icmfcn 2380 2375 2382 2379 2380 2375
cmfr 2321 2313 2319 2321 2318 2312
icmfr 2368 2378 2371 2378 2368 2380

Figure 3.1: Evaluation of weight and precedence generation schemes

0.25 0.35 0.5 0.7 1 1.41 2 2.82 4
W 2311 2341 2363 2374 2379 2376 2377 2376 2377
TW 2331 2331 2360 2371 2372 2374 2373 2373 2372

Figure 3.2: Evaluation of weight function and appv_mult factor

The literal selection function has little impact on performance: Ehoh solves 2379 prob-
lems with SelectMLCAPP or SelectMLCAPPAvoidAppVar, and one less with SelectMLCAPP-
PreferAppVar.

Clause selection is the heuristic component that we extended the most. We had to
assess the effect of a new heuristic weight function, a multiplier for the occurrence of
top-level applied variables, and clause priority based on the number of top-level applied
variables.

To test the effect of the new type-based weight function, we replaced boa’s queue
that uses 4.CRSWeight(…), with the queue ordered by 4.CRSTypeWeight(…). The original
heuristic is called W and the type-aware alternative TW. We intuitively chose nine values for
testing the effect of the applied variable multiplier appv_mult. Figure 3.2 summarizes the
results of combining W or TW with the different appv_mult values. Applying a multiplier
smaller than 1, which corresponds to preferring literals containing applied variables, can
lose dozens of solutions. Overall, using the type-aware heuristic seems slightly detrimen-
tal.

Finally, we evaluated the new clause priority function ByAppVarNum, by replacing
4.CRSWeight(ConstPrio,…) with 4.CRSWeight(ByAppVarNum,…) in boa’s specification.
ConstPrio assigns each clause the same priority. The results are inconclusive.

The results presented above give an idea of how each parameter influences perfor-
mance. We also evaluated their performance in combination, to derive an alternative to
boa for 𝜆fHOL. For each category of parameters, we chose either boa’s value of the param-
eter in boa (“Old”) or the best performing newly implemented parameter (“New”). Based
on the results above, for term orders, we chose the combination of invtypefreqrank and

3.9 Evaluation

3

49

Term order Literal selection Clause weight Solved
Old Old Old 2379
Old Old New 2374
Old New Old 2379
Old New New 2373
New Old Old 2394
New Old New 2397
New New Old 2395
New New New 2397

Figure 3.3: Evaluation of combinations of new parameters

invtypefreq; for clause selection, we chose CRSTypeWeight with ConstPrio priority and
an appv_mult factor of 1.41; for literal selection, we chose SelectMLCAPPAvoidAppVar.

Figure 3.3 shows the number of solved problems for all combinations of these param-
eters. From the two configurations that solve 2397 problems, we selected the “New Old
New” combination as our suggested “higher-order best of auto,” or hoboa, configuration.

MainEvaluation Wenowpresent amore detailed evaluation of hoboa, alongwith other
configurations, on a larger benchmark suite. Our raw data are publicly available.²

The benchmarks are divided into four sets: (1) 1147 first-order TPTP [157] problems
belonging to the FOF (untyped) and TF0 (monomorphic) categories, excluding arithmetic;
(2) 5012 Sledgehammer-generated problems from the Judgment Day [34] suite, target-
ing the monomorphic first-order logic embodied by TPTP TF0; (3) all 955 monomorphic
higher-order problems from the TH0 category of the TPTP belonging to our extension of𝜆fHOL; (4) 5012 Judgment Day problems targeting the 𝜆fHOL fragment of TPTP TH0.

The TPTP includes benchmarks from various areas of computer science and mathe-
matics. It is the de facto standard for evaluating automatic provers, but it has few higher-
order problems. For the first group of benchmarks, we randomly selected 1000 FOF prob-
lems (out of 8172) and all monomorphic TFF problems that are parsable by E within 60 s
(amounting to 147 out of 231 monomorphic TFF problems). Both groups of Sledgehammer
problems include two subgroups of 2506 problems, generated to include 32 or 512 Isabelle
lemmas (SH32 and SH512), to represent both small and large problems. Each subgroup
consists of two sub-subgroups of 1253 problems, generated by using either 𝜆-lifting or
SKBCI-style combinators to encode 𝜆-expressions.

To ascertain the effectiveness of our approach, we evaluated Ehoh against E used on
applicative encodings of problems (denoted by@+E). For reference, we also evaluated the
following versions of higher-order provers that competed in the THF division of the 2019
edition of CASC [160]: CVC4 1.8 prerelease [11], Leo-III 1.4 [153], Satallax 3.4 [39], Vampire
4.4 [24], and Zipperposition 1.6 [48, 49]. Like at CASC, we used different versions of Vam-
pire for first-order and higher-order problems. Similarly, Zipperposition does not use E as
backend when it is run on first-order problems and uses different heuristics on first- and
higher-order problems. The genuine higher-order provers have the advantage that they

²https://doi.org/10.5281/zenodo.4045452

https://doi.org/10.5281/zenodo.4045452

3

50 Extending a Brainiac Prover to Lambda-Free Higher-Order Logic

First-order Higher-order
TPTP SH32 SH512 TPTP SH32 SH512

E a 624 938 1237
E as 665 957 1298
E b 550 943 1242@+E a 531 932 1111 686 952 1125@+E as 571 949 1148 692 969 1164@+E b 536 943 1227 690 959 1267
Ehoh a 624 939 1236 694 966 1235
Ehoh as 665 957 1296 699 988 1309
Ehoh b 550 943 1242 697 967 1262
Ehoh hb 504 947 1231 693 975 1267
CVC4 567 956 1361 745 973 1351
Leo-III 548 960 1239 834 967 1266
Vampire 728 968 1401 805 979 1214
Satallax 827 871 1019
Zipperposition 496 933 1187 815 976 1069

Figure 3.4: Number of proved problems

can instantiate higher-order variableswith 𝜆-terms. Thus, some formulas that are provable
by these systems may be nontheorems for@+E and Ehoh, or they may require tedious rea-
soning about 𝜆-lifted functions or SKBCI-style combinators. An example is the conjecture∃𝑓 . ∀𝑥 𝑦. 𝑓 𝑥 𝑦 ≈ g 𝑦 𝑥 , whose proof requires taking 𝜆𝑥 𝑦. g 𝑦 𝑥 as the witness for 𝑓 .

We ran all provers except Satallax (which supports only THF) on first-order bench-
marks to measure the overhead introduced by our extensions, as well as that entailed by
the applicative encoding. Figure 3.4 gives the number of problems each system proved. In
each column, bold highlights the best E value and the best value overall. We considered
the E modes auto (a) and autoschedule (as) and the configurations boa (b) and hoboa (hb).

We observe the following. First, comparing the Ehoh row with the E row, we see that
Ehoh’s overhead is barely noticeable—the difference is at most two problems. Second,
Ehoh outperforms the applicative encoding on both first-order and higher-order problems.
Nevertheless, the raw evaluation data reveal that there are quite a few higher-order prob-
lems that @+E proves faster than Ehoh. Third, it is advantageous to use the higher-order
versions of the Sledgehammer problems, although the difference in success rate is small,
especially for SH512. Fourth, the new hoboa outperforms boa on most higher-order prob-
lems, suggesting that it could be worthwhile to re-train auto and autoschedule based on𝜆fHOL benchmarks and to design further heuristics. Fifth, Ehoh cannot compete against
the best higher-order systems, but this is no surprise given that it does not support 𝜆-
expressions and higher-order unification. An extension of Ehoh that supports these fea-
tures is described in Chapter 7.

Next to the success rate, the time inwhich a prover gives an answer is also an important
consideration. Figure 3.5 compares the average running times, in seconds, of the various
systems on the problems that all of the applicable systems proved. Clearly, Ehoh incurs

3.10 Discussion and Related Work

3

51

little overhead on first-order problems. The raw evaluation data reveal that for boa, it
takes Ehoh 2747 s to prove all first-order problems that E, @+E, and Ehoh can all prove
using this configuration, compared with 2728 s for E, amounting to a 0.7% overhead. For
comparison, @+E needs 3939 s—a 44% overhead.

First-order Higher-order
TPTP SH32 SH512 TPTP SH32 SH512

E a 0.22 0.15 0.54
E as 0.38 0.20 0.74
E b 0.43 0.07 0.56@+E a 0.61 0.18 0.38 0.03 0.21 0.32@+E as 0.91 0.18 0.39 0.06 0.25 0.33@+E b 0.53 0.12 0.81 0.09 0.20 0.54
Ehoh a 0.21 0.15 0.54 0.03 0.08 0.51
Ehoh as 0.38 0.20 0.73 0.07 0.14 0.60
Ehoh b 0.42 0.07 0.58 0.02 0.07 0.37
Ehoh hb 0.69 0.12 1.06 0.10 0.13 0.56
CVC4 3.02 1.58 1.75 1.22 2.44 1.65
Leo-III 1.33 0.52 5.63 0.49 0.89 6.54
Vampire 0.67 0.43 1.50 0.76 1.89 4.84
Satallax 2.45 5.22 10.12
Zipperposition 3.81 1.60 5.09 0.76 2.21 6.31

Figure 3.5: Average running times on the problems proved by all systems

3.10 Discussion and RelatedWork
Our working hypothesis is that it is possible to extend first-order provers to higher-order
logic without slowing them down unduly. Our research program is two-pronged: On
the theoretical side, we are investigating higher-order extensions of superposition [15,
18, 170]; on the practical side, we are implementing such extensions in a state-of-the-art
prover. In this thesis, the focus is on the second aspect.

The work described in this chapter was large in scope: it required modifying almost all
parts of the E prover, from the parser, to the inference engine, to heuristics. The invariant
that variables cannot be applied and that symbols are always passed the same number of
arguments were entrenched in E’s code, requiring hundreds ofmodifications. Nonetheless,
we found the generalization manageable. The generalization put us in a position to add
support for 𝜆-terms and higher-order unification, as discussed in Chapter 7.

Traditionally, most higher-order provers were designed from the ground up to target
higher-order logic. Two exceptions are Otter-𝜆 by Beeson [14] and Zipperposition by
Cruanes et al. [48, 49]. Otter-𝜆 adds 𝜆-terms and second-order unification to the first-
order prover Otter [115]. Zipperposition, based on superposition, was extended to Boole-
an-free higher-order logic by Bentkamp et al. [18]. Its performance is a far cry from E’s,
but it is easier to modify. Vukmirović et al. also used it to test and evaluate higher-order

3

52 Extending a Brainiac Prover to Lambda-Free Higher-Order Logic

unification procedures [168] and Boolean reasoning [170]. Zipperposition now includes
Ehoh as a backend in a cooperative architecture. Finally, there is work by the developers
of Vampire [24] and of the SMT solvers CVC4 and veriT [11] to extend their provers to
higher-order logic.

Native higher-order reasoning was pioneered by Robinson [140], Andrews [1], and
Huet [81]. Andrews [2] and Benzmüller and Miller [20] provide excellent surveys. TPS,
by Andrews et al. [3], was based on expansion proofs and lets users specify proof out-
lines. The Leo family of systems, developed by Benzmüller and his colleagues, is based on
resolution and paramodulation. LEO [19] supported extensionality on the calculus level
and introduced the cooperative paradigm to integrate first-order provers. Leo-III [153]
expands the cooperation with SMT solvers and introduces term orders in a pragmatic, in-
complete way. Brown’s Satallax [39] is based on a complete higher-order tableau calculus,
guided by a SAT solver; later versions also cooperate with E and Ehoh. Another notewor-
thy system is Lindblad’s agsyHOL [107]. It is based on a focused sequent calculus driven
by a generic narrowing engine.

An alternative to all of the above is to reduce higher-order logic to first-order logic via
a translation. Robinson [141] outlined this approach decades before tools such as Miz𝔸ℝ
[166], Sledgehammer [131], HOLyHammer [89], and CoqHammer [51] popularized it in
proof assistants. In addition to performing an applicative encoding, such translationsmust
eliminate the 𝜆-expressions [50, 117] and encode the type information [29]. In practice,
on problems with a large first-order component, translations perform very well compared
with native provers [156]. Largely thanks to Sledgehammer, Isabelle often came in a close
second at CASC, even defeating Satallax in 2012 [158].

By removing the need for the applicative encoding, our work reduces the translation
gap. The applicative encoding buries the 𝜆fHOL terms’ heads under layers of @ sym-
bols. Terms double in size, cluttering the data structures, and twice as many subterm
positions must be considered for inferences. Moreover, the encoding is incompatible
with interpreted operators, notably for arithmetic. A common remedy is to introduce
proxies to connect an uninterpreted nullary symbol with its interpreted counterpart (e.g.,@(@(add, 𝑥),𝑦) ≈ 𝑥 +𝑦), but this is clumsy. A further complication is that in a monomor-
phic logic, @ is not a single symbol but a family of symbols @𝜏,𝜐 , which must be correctly
introduced and recognized. Finally, the encoding must be undone in the proofs. While
it should be possible to base a higher-order prover on such an encoding, the prospect is
aesthetically and technically unappealing, and performance would likely suffer.

3.11 Conclusion
Despite considerable progress since the 1970s, until a few years ago higher-order auto-
mated reasoning had not assimilated some of the most successful methods for first-order
logic with equality, such as superposition. We presented a graceful extension of a state-of-
the-art first-order theorem prover to a fragment of higher-order logic devoid of 𝜆-terms.
Our work covers both theoretical and practical aspects. Experiments show promising re-
sults on 𝜆-free higher-order problems and very little overhead for first-order problems, as
we would expect from a graceful generalization.

Despite its lack of support for 𝜆-terms, Ehoh is already deployed as a backend in the
leading higher-order provers Satallax and Zipperposition. Ehoh also forms the basis of

3.11 Conclusion

3

53

our work toward stronger higher-order automation. Our aim is to turn it into a prover
that excels on proof obligations arising in interactive verification, which tend to be large
but only mildly higher-order [156]. In Chapter 7 we describe the extension of Ehoh to full
higher-order logic. It was heavily inspired by the techniques implemented in Zipperposi-
tion, which helped it dominate CASC in 2020 and 2021.

4

55

4
Efficient Full Higher-Order Unification

Joint work with
Alexander Bentkamp and Visa Nummelin

We developed a procedure to enumerate complete sets of higher-order unifiers based on work
by Jensen and Pietrzykowski. Our procedure removes many redundant unifiers by carefully
restricting the search space and tightly integrating decision procedures for fragments that
admit a finite complete set of unifiers. We identify a new such fragment and describe a
procedure for computing its unifiers. Our unification procedure, together with new higher-
order term indexing data structures, is implemented in the Zipperposition theorem prover.
Experimental evaluation shows a clear advantage over Jensen and Pietrzykowski’s procedure.

In this work I designed the main algorithm, solid oracle, and fingerprint indexing. I also implemented and evalu-
ated the algorithms. Visa Nummelin proved the completeness of the main algorithmwith Alexander Bentkamp’s
help. The completeness and termination of solid oracle was proven by me with Alexander Bentkamp’s help.

4

56 Efficient Full Higher-Order Unification

4.1 Introduction
As mentioned in Chapter 1, many of the reasoning systems deployed in various areas of
computer science andmathematics are based on variants of higher-order logic. More often
than not, they also require unification of higher-order terms. Due to its undecidability
and explosiveness, the higher-order unification problem is considered one of the main
obstacles on the road to efficient higher-order tools.

One of the reasons for higher-order unification’s explosiveness lies in flex-flex pairs,
which consist of two variable-headed terms, e.g., 𝐹 𝑋 ?= 𝐺 a. Even this seemingly simple
problem has infinitely many incomparable unifiers. One of the first methods designed
to combat this explosion is Huet’s preunification [82]. Huet noticed that some logical
calculi would remain complete if flex-flex pairs are not eagerly solved but postponed as
constraints. If only flex-flex constraints remain, we know that a unifier must exist and we
do not need to solve them. Huet’s preunification has been used in many reasoning tools
including Isabelle [125], Leo-III [153], and Satallax [39]. However, recent developments in
higher-order theoremproving [18, 24] require full unification—i.e., enumeration of unifiers
even for flex-flex pairs, which is the focus of this chapter.

Jensen and Pietrzykowski’s (JP) procedure [86] is the best known procedure for this
purpose (Sect. 4.2). Given two terms to unify, it first identifies a position where the terms
disagree. Then, in parallel branches of the search tree, it applies suitable substitutions, in-
volving a variable either at the position of disagreement or above, and repeats this process
on the resulting terms until they are equal or trivially nonunifiable.

Building on the JP procedure, we designed a new procedure (Sect. 4.3) with the same
completeness guarantees (Sect. 4.4). The new procedure addresses many of the issues that
are detrimental to the performance of the JP procedure. First, the JP procedure does not
terminate in many cases of obvious nonunifiability, e.g., for 𝑋 ?= f𝑋 , where 𝑋 is a nonfunc-
tional variable and f is a function constant. This example also shows that the JP procedure
does not generalize Robinson’s first-order procedure gracefully. To address this issue, our
procedure detects whether a unification problem belongs to a fragment for which unifica-
tion is decidable and finite complete sets of unifiers (CSUs) exist. We call algorithms that
enumerate elements of the CSU for such fragments oracles. Noteworthy fragments with
oracles are first-order terms, patterns [124], functions-as-constructors [105], and a new
fragment presented in Sect. 4.5. The unification procedures of Isabelle and Leo-III check
whether the unification problem belongs to a decidable fragment, but we take this idea a
step further by checking this more efficiently, and for every subproblem arising during
unification.

Second, the JP procedure computes many redundant unifiers. Consider the example𝐹 (𝐺 a) ?= 𝐹 b, where it produces, in addition to the desired unifiers {𝐹 ↦ 𝜆𝑥.𝐻} and {𝐺 ↦𝜆𝑥.b}, the redundant unifier {𝐹 ↦ 𝜆𝑥.𝐻 , 𝐺 ↦ 𝜆𝑥.𝑥}. The design of our procedure avoids
computing many redundant unifiers, including this one. Additionally, as oracles usually
return a small CSU, their integration reduces the number of redundant unifiers.

4.2 Background

4

57

Third, the JP procedure applies more explosive rules than Huet’s preunification pro-
cedure to flex-rigid pairs. To gracefully generalize Huet’s procedure, we show that his
rules for flex-rigid pairs suffice to enumerate CSUs if combined with appropriate rules for
flex-flex pairs.

Fourth, the JP procedure repeatedly traverses the parts of the unification problem that
have already been unified. Consider the problem f100 (𝐺 a) ?= f100 (𝐻 b), where the expo-
nents denote repeated application. It is easy to see that this problem can be reduced to𝐺 a ?= 𝐻 b. However, the JP procedure will wastefully retraverse the common context f100[]
after applying each new substitution. Since the JP procedure must apply substitutions to
the variables occurring in the common context above the position of disagreement, it can-
not be easily adapted to eagerly decompose unification pairs. By contrast, our procedure
is designed to decompose the pairs eagerly, never traversing a common context twice.

Last, the JP procedure does not allow applying substitutions and 𝛽-reducing lazily. The
rules of simpler procedures (e.g., first-order [79] and pattern unification [124]) depend on
only the heads of the unification pair. Thus, to determine the next step, implementations
of these procedures need to substitute and 𝛽-reduce until only the heads of the current
unification pair are not mapped by the substitution and are not 𝜆-abstractions. Since the
JP procedure is not based on the decomposition of unification pairs, it is unfit for optimiza-
tions of this kind. We designed our procedure to allow for this optimization.

To more efficiently find terms (in a large term set) that are unifiable with a given query
term, we developed a higher-order extension of fingerprint indexing [144] (Sect. 4.6). We
implemented our procedure, several oracles, and the fingerprint index (Sect. 4.7) in the Zip-
perposition prover [48, 49]. Since a straightforward implementation of the JP procedure
already existed in Zipperposition, we used it as a baseline to evaluate the performance of
our procedure (Sect. 4.8). The results show substantial performance improvements.

4.2 Background
Our setting is the simply typed 𝜆-calculus. Unless mentioned otherwise, we use the same
notation as laid out in Chapter 2. Additional notions are introduced as follows.

Parameters and body for any term 𝜆𝑥. 𝑠 are defined to be 𝑥 and 𝑠 respectively, where 𝑠
is not a 𝜆-abstraction. The size of a term is inductively defined as size(𝐹) = 1; size(𝑥) = 1;
size(f) = 1; size(𝑠 𝑡) = size(𝑠) + size(𝑡); size(𝜆𝑥. 𝑠) = size(𝑠) + 1. A term is in head normal
form (hnf) if it is of the form 𝜆𝑥.𝑎 𝑡 , where 𝑎 is a free variable, a bound variable, or a con-
stant. In this case, 𝑎 is called the head of the term. Note that this relaxes the condition
that the term needs to be in 𝛽-normal form to determine its head. A term is called flex or
rigid if its head is flex or rigid, respectively. By 𝑠 ↓h we denote the term obtained from
a term 𝑠 by repeated 𝛽-reduction of the leftmost outermost redex until it is in hnf. Un-
less stated otherwise, we view terms syntactically, as opposed to 𝛼𝛽𝜂-equivalence classes.
The common context 𝒞(𝑠, 𝑡) of two 𝜂-long 𝛽-reduced terms 𝑠 and 𝑡 of the same type is
defined inductively as follows, assuming that 𝑎 ≠ 𝑏: 𝒞(𝜆𝑥. 𝑠,𝜆𝑦. 𝑡) = 𝜆𝑥.𝒞 (𝑠, {𝑦 ↦ 𝑥}𝑡);𝒞(𝑎 𝑠𝑚,𝑏 𝑡𝑛) = !; 𝒞(𝑎 𝑠𝑚,𝑎 𝑡𝑚) = 𝑎𝒞 (𝑠1, 𝑡1) … 𝒞(𝑠𝑚, 𝑡𝑚). Unless otherwise stated, we take
the unification constraint 𝑠 ?= 𝑡 to be an unordered pair of two terms of the same type. To
ease notation, we do not write parentheses around application of substitutions to terms
(or other objects containing terms); in other words we shorten 𝜎(𝜃(𝜚(𝑠))) to 𝜎𝜃𝜚 𝑠. When
we write 𝜏1 → ⋯ → 𝜏𝑛 → 𝜐 we assume 𝜐 to be a base type, by convention.

4

58 Efficient Full Higher-Order Unification

Remark We use the definition of a CSU from Sect. 2.5.2 because JP’s definition of a
CSU, which we have adopted in our earlier work [168], is flawed. JP’s definition does not
employ the notion of auxiliary variables, but instead requires 𝜚𝑋 = 𝜃𝜎𝑋 for all variables
mapped by 𝜚. This is problematic because nothing prevents 𝜚 from mapping the auxiliary
variables. For example, 𝜎 = {𝐹 ↦ 𝜆𝑥𝑦. 𝐺 𝑦} is supposed to be an MGU for 𝐹 a c ?= 𝐹 b c.
But for the unifier 𝜚 = {𝐹 ↦ 𝜆𝑥𝑦. 𝑦, 𝐺 ↦ 𝜆𝑥.d}, without the notion of auxiliary variables,
there exists no appropriate substitution 𝜃 because 𝜚𝐺 = 𝜃𝜎𝐺 requires 𝜃𝐺 = 𝜆𝑥.d and 𝜚𝐹 =𝜃𝜎𝐹 requires 𝜃𝐺 = 𝜆𝑥. 𝑥 . By declaring 𝐺 as an auxiliary variable, we focus only on the
important variables from the initial problem (in this case only 𝐹), which allows 𝜎 to be an
MGU.

4.3 The Unification Procedure
To unify two terms 𝑠 and 𝑡 , our procedure builds a tree as follows. The nodes of the tree
have the form (𝐸,𝜎), where 𝐸 is a multiset of unification constraints {(𝑠1 ?= 𝑡1),…, (𝑠𝑛 ?= 𝑡𝑛)}
and 𝜎 is the substitution constructed up to that point. The root node is ({𝑠 ?= 𝑡}, id), where
id is the identity substitution. The tree is then constructed applying the transitions listed
below. The leaves of the tree are either failure nodes ⊥ or substitutions 𝜎 . Ignoring failure
nodes, the set of all substitutions in the leaves forms a complete set of unifiers for 𝑠 and 𝑡 .
More generally, our procedure can be used to unify a multiset 𝐸 of constraints by making
the root of the unification tree (𝐸, id).

The procedure requires an infinite supply of fresh free variables that must be disjoint
from the variables occurring in the initial multiset 𝐸. Whenever a transition (𝐸,𝜎) ⟶(𝐸′,𝜎′) is made, all fresh variables used in 𝜎′ are removed from the supply and cannot be
used again as fresh variables.

The transitions are parameterized by a mapping𝒫 that assigns a set of substitutions to
a unification pair; this mapping abstracts the concept of unification rules present in other
unification procedures. Moreover, the transitions are parameterized by a selection func-
tion 𝑆 mapping a multiset 𝐸 of unification constraints to one of those constraints 𝑆(𝐸) ∈ 𝐸,
the selected constraint in 𝐸. In this chapter, we consider freshness of the variables with
respect to the free variables occurring in 𝐸. The transitions, defined as follows, are only
applied if the grayed constraint is selected.

Succeed (∅,𝜎) ⟶ 𝜎
Normalize𝛼𝜂 ({ 𝜆𝑥𝑚. 𝑠 ?= 𝜆𝑦𝑛. 𝑡 } ⊎𝐸,𝜎) ⟶ ({𝜆𝑧𝑚. 𝑠′ ?= 𝜆𝑧𝑚. 𝑡′ 𝑧𝑛+1…𝑧𝑚}⊎𝐸,𝜎)

where 𝑚 ≥ 𝑛, 𝑥𝑚 ≠ 𝑦𝑛 , 𝑠 and 𝑡 are not 𝜆-abstractions, 𝑧𝑚 are bound variables fresh
with respect to 𝑠 and 𝑡 , 𝑠′ = {𝑥1 ↦ 𝑧1,…,𝑥𝑚 ↦𝑧𝑚}𝑠, and 𝑡′ = {𝑦1 ↦ 𝑧1,…,𝑦𝑛 ↦ 𝑧𝑛} 𝑡

Normalize𝛽 ({ 𝜆𝑥. 𝑠 ?= 𝜆𝑥. 𝑡 } ⊎𝐸,𝜎) ⟶ ({𝜆𝑥. 𝑠 ↓h ?= 𝜆𝑥. 𝑡 ↓h} ⊎𝐸,𝜎)
where 𝑠 or 𝑡 is not in hnf

Dereference ({ 𝜆𝑥.𝐹 𝑠 ?= 𝜆𝑥. 𝑡 } ⊎𝐸,𝜎) ⟶ ({𝜆𝑥. (𝜎𝐹)𝑠 ?= 𝜆𝑥. 𝑡} ⊎𝐸,𝜎)
where none of the previous transitions applies and 𝐹 is mapped by 𝜎

Fail ({ 𝜆𝑥.𝑎 𝑠𝑚 ?= 𝜆𝑥.𝑏 𝑡𝑛 } ⊎𝐸,𝜎) ⟶ ⊥
where none of the previous transitions applies, and 𝑎 and 𝑏 are different rigid heads

4.3 The Unification Procedure

4

59

Delete ({ 𝑠 ?= 𝑠 } ⊎𝐸,𝜎) ⟶ (𝐸,𝜎)
where none of the previous transitions applies

OracleSucc ({ 𝑠 ?= 𝑡 } ⊎𝐸,𝜎) ⟶ (𝐸,𝜚𝜎)
where none of the previous transitions applies, some oracle found a finite CSU 𝑈 for𝜎𝑠 ?= 𝜎𝑡 using fresh auxiliary variables, and 𝜚 ∈ 𝑈 ; if multiple oracles found a CSU,
only one of them is considered

OracleFail ({ 𝑠 ?= 𝑡 } ⊎𝐸,𝜎) ⟶ ⊥
where none of the previous transitions applies, and some oracle determined 𝜎𝑠 ?= 𝜎𝑡
has no solutions

Decompose ({ 𝜆𝑥.𝑎 𝑠𝑚 ?= 𝜆𝑥.𝑎 𝑡𝑚 } ⊎𝐸,𝜎) ⟶ ({𝑠1 ?= 𝑡1,…, 𝑠𝑚 ?= 𝑡𝑚} ⊎𝐸,𝜎)
where none of the transitions Succeed to OracleFail applies

Bind ({ 𝑠 ?= 𝑡 } ⊎𝐸,𝜎) ⟶ ({𝑠 ?= 𝑡} ⊎𝐸,𝜚𝜎)
where none of the transitions Succeed to OracleFail applies, and 𝜚 ∈ 𝒫 (𝑠 ?= 𝑡).

The transitions are designed so that only OracleSucc, Decompose, and Bind can introduce
parallel branches in the constructed tree. OracleSucc can introduce branches using differ-
ent unifiers of the CSU, Bind can introduce branches using different substitutions in 𝒫 ,
and Decompose can be applied in parallel with Bind.

The forms of the rules OracleSucc and Bind are similar: both extend the current sub-
stitution. However, they are designed following different principles. OracleSucc solves
the selected unification constraint using an efficient algorithm applicable only to certain
classes of terms. On the other hand, Bind is applied to explore the whole search space for
any given constraint. To compute a CSU using efficient oracles and to discover failures
early, Bind is applicable only if OracleSucc (or OracleFail) is not.

Our approach is to apply substitutions and 𝛼𝛽𝜂-normalize terms lazily. In this con-
text, laziness means that the transitions Normalize𝛼𝜂, Normalize𝛽 , and Dereference partially
normalize and partially apply the constructed substitution just enough to ensure that the
heads are the ones that would be obtained if the substitutionwas fully applied and the term
was fully normalized. Additionally, the transitions that modify the constructed substitu-
tion, OracleSucc and Bind, do not apply that substitution to the unification pairs directly,
but only extend it with a new binding. To support lazy dereferencing, these rules must
maintain the invariant that all substitutions are idempotent. The invariant is easily pre-
served if the substitution 𝜚 from the definitions of OracleSucc and Bind is itself idempotent
and no variable mapped by 𝜎 occurs in 𝜚𝐹 , for any variable 𝐹 mapped by 𝜚.

The OracleSucc and OracleFail transitions invoke oracles, such as pattern unification,
to compute a CSU faster, produce fewer redundant unifiers, and discover nonunifiability
earlier. In some cases, the addition of oracles lets the procedure terminate more often.

In the literature, oracles are usually stated under the assumption that their input be-
longs to the appropriate fragment. To check whether a unification constraint is inside the
fragment, the substitution must be fully applied and the constraint must be 𝛽-normalized.
To avoid these expensive operations and enable efficient oracle integration, oracles must
be redesigned to lazily discover whether the terms belong to their fragment. Most oracles

4

60 Efficient Full Higher-Order Unification

contain a decomposition operation that requires only a partial application of the substi-
tution and only partial 𝛽-normalization. If one of the constraints resulting from decom-
position is not in the fragment, the original problem is not in the fragment. This allows
detecting that the problem is not in the fragment without fully applying the substitution
and 𝛽-normalizing.

The core of the procedure lies in the Bind step, parameterized by the mapping 𝒫 that
determines which substitutions (bindings) to create. The bindings are defined as follows:
JP-style projection for 𝐹 Let 𝐹 be a free variable of type 𝛼1 → ⋯ → 𝛼𝑛 → 𝛽 , where

some 𝛼𝑖 is equal to 𝛽 and 𝑛 > 0. Then the JP-style projection binding is𝐹 ↦ 𝜆𝑥𝑛.𝑥𝑖
Huet-style projection for 𝐹 Let 𝐹 be a free variable of type 𝛼1 → ⋯ → 𝛼𝑛 → 𝛽 , where

some 𝛼𝑖 = 𝛾1 → ⋯ → 𝛾𝑚 → 𝛽 , 𝑛 > 0 and 𝑚 ≥ 0. Huet-style projection is𝐹 ↦ 𝜆𝑥𝑛.𝑥𝑖 (𝐹1 𝑥𝑛) … (𝐹𝑚 𝑥𝑛)
where the fresh free variables 𝐹𝑚 and bound variables 𝑥𝑛 are of appropriate types.

Imitation of 𝑎 for 𝐹 Let 𝐹 be a free variable of type 𝛼1 → ⋯ → 𝛼𝑛 → 𝛽 and 𝑎 be a free
variable or a constant of type 𝛾1 → ⋯ → 𝛾𝑚 → 𝛽 where 𝑛,𝑚 ≥ 0. The imitation
binding is 𝐹 ↦ 𝜆𝑥𝑛.𝑎 (𝐹1 𝑥𝑛)…(𝐹𝑚 𝑥𝑛)
where the fresh free variables 𝐹𝑚 and bound variables 𝑥𝑛 are of appropriate types.

Elimination for 𝐹 Let 𝐹 be a free variable of type 𝛼1 → ⋯ → 𝛼𝑛 → 𝛽 , where 𝑛 > 0. In
addition, let 1 ≤ 𝑗1 < ⋯ < 𝑗𝑖 ≤ 𝑛 and 𝑖 < 𝑛. Elimination for the sequence (𝑗𝑘)𝑖𝑘=1 is𝐹 ↦ 𝜆𝑥𝑛.𝐺 𝑥𝑗1 … 𝑥𝑗𝑖
where the fresh free variable 𝐺 as well as all 𝑥𝑗𝑘 are of appropriate types. We call
fresh variables emerging from this binding in the role of 𝐺 elimination variables.

Identification for 𝐹 and 𝐺 Let 𝐹 and 𝐺 be different free variables. Furthermore, let the
type of 𝐹 be 𝛼1 → ⋯ → 𝛼𝑛 → 𝛽 and the type of 𝐺 be 𝛾1 → ⋯ → 𝛾𝑚 → 𝛽 , where𝑛,𝑚 ≥ 0. Then, the identification binding binds 𝐹 and 𝐺 with𝐹 ↦ 𝜆𝑥𝑛.𝐻 𝑥𝑛 (𝐹1 𝑥𝑛)…(𝐹𝑚 𝑥𝑛) 𝐺 ↦ 𝜆𝑦𝑚.𝐻 (𝐺1 𝑦𝑚)…(𝐺𝑛 𝑦𝑚)𝑦𝑚
where the fresh free variables 𝐻,𝐹𝑚,𝐺𝑛 and bound variables 𝑥𝑛 ,𝑦𝑚 are of appropri-
ate types. Fresh variables from this binding with the role of 𝐻 are called identifica-
tion variables.

Iteration for 𝐹 Let 𝐹 be a free variable of the type 𝛼1 → ⋯ → 𝛼𝑛 → 𝛽1 and let some 𝛼𝑖
be the type 𝛾1 → ⋯ → 𝛾𝑚 → 𝛽2, where 𝑛 > 0 and 𝑚 ≥ 0. Iteration for 𝐹 at 𝑖 is𝐹 ↦ 𝜆𝑥𝑛.𝐻 𝑥𝑛 (𝜆𝑦.𝑥𝑖 (𝐺1 𝑥𝑛 𝑦)…(𝐺𝑚 𝑥𝑛 𝑦))
The free variables 𝐻 and 𝐺1,…,𝐺𝑚 are fresh, and 𝑦 is an arbitrary-length sequence
of bound variables of arbitrary types. All new variables are of appropriate types.
Due to indeterminacy of 𝑦, this step is infinitely branching.

4.3 The Unification Procedure

4

61

The following mapping 𝒫c(𝜆𝑥. 𝑠 ?= 𝜆𝑥. 𝑡) is used as the parameter 𝒫 of the procedure. It
provides all the bindings that the procedures needs to be complete, and it is defined as
follows:

• If the constraint is rigid-rigid, 𝒫c(𝜆𝑥. 𝑠 ?= 𝜆𝑥. 𝑡) = ∅.
• If the constraint is flex-rigid, let 𝒫c(𝜆𝑥.𝐹 𝑠 ?= 𝜆𝑥.𝑎 𝑡) be

– an imitation of 𝑎 for 𝐹 , if 𝑎 is a constant, and
– all Huet-style projections for 𝐹 , if 𝐹 is not an identification variable.

• If the constraint is flex-flex and the heads are different, let 𝒫c(𝜆𝑥.𝐹 𝑠 ?= 𝜆𝑥.𝐺 𝑡) be
– all identifications and iterations for both 𝐹 and 𝐺, and
– all JP-style projections for non-identification variables among 𝐹 and 𝐺.

• If the constraint is flex-flex and the heads are identical, we distinguish two cases:

– if the head is an elimination variable, 𝒫c(𝜆𝑥. 𝑠 ?= 𝜆𝑥. 𝑡) = ∅;
– otherwise, let 𝒫c(𝜆𝑥.𝐹 𝑠 ?= 𝜆𝑥.𝐹 𝑡) be all iterations for 𝐹 at arguments of func-

tional type and all eliminations for 𝐹 .
Comparison with the JP Procedure The JP procedure enumerates unifiers by con-
structing a search tree with nodes of the form (𝑠 ?= 𝑡,𝜎), where 𝑠 ?= 𝑡 is the current unifica-
tion problem and 𝜎 is the substitution built so far. The initial node consists of the input
problem and the identity substitution. Success nodes are nodes of the form (𝑠 ?= 𝑠,𝜎). The
set of all substitutions contained in the success nodes form a CSU.

To determine the child nodes of a node (𝑠 ?= 𝑡,𝜎), the procedure computes the common
context 𝐶 of 𝑠 and 𝑡 , yielding term pairs (𝑠1, 𝑡1),… , (𝑠𝑛, 𝑡𝑛), called disagreement pairs, such
that 𝑠 = 𝐶[𝑠1,…, 𝑠𝑛] and 𝑡 = 𝐶[𝑡1,…, 𝑡𝑛]. It chooses one of the disagreement pairs (𝑠𝑖 , 𝑡𝑖).
Depending on the context 𝐶 and the chosen disagreement pair (𝑠𝑖 , 𝑡𝑖), it determines a set
of bindings 𝒫JP(𝐶, 𝑠𝑖 , 𝑡𝑖). For each of the bindings 𝜚 ∈ 𝒫JP(𝐶, 𝑠𝑖 , 𝑡𝑖), it creates a child node((𝜚𝑠) ↓𝛽𝜂 ?= (𝜚𝑡) ↓𝛽𝜂,𝜚𝜎), where 𝑢 ↓𝛽𝜂 denotes a 𝛽𝜂-normal form of a term 𝑢.

The set of bindings𝒫JP(𝐶, 𝑠𝑖 , 𝑡𝑖) is based on the heads of 𝑠𝑖 and 𝑡𝑖 , and the free variables
occurring above 𝑠𝑖 and 𝑡𝑖 in 𝐶 . The set 𝒫JP(𝐶, 𝑠𝑖 , 𝑡𝑖) contains

• all JP-style projections for free variables that are heads of 𝑠𝑖 or 𝑡𝑖 ;¹
• an imitation of 𝑎 for 𝐹 if a free variable 𝐹 is the head of 𝑠𝑖 and a free variable or
constant 𝑎 is the head of 𝑡𝑖 (or vice versa);

• all eliminations for free variables occurring above the chosen disagreement pair
eliminating only the argument containing the disagreement pair;

• an identification for the heads of 𝑠𝑖 and 𝑡𝑖 if they are both free variables; and

¹In JP’s formulation of projection, they explicitly mention that the projected argument must be of base type. In
our presentation, this follows from 𝛽 being of base type by the convention introduced in Sect. 2.3.

4

62 Efficient Full Higher-Order Unification

• all iterations for the heads of 𝑠𝑖 and 𝑡𝑖 if they are free variables, and for all free
variables occurring above the disagreement pair.²

Architecturally, the most noticeable difference between the JP procedure and ours is
the representation of the problem: The JP procedure works on a single constraint, while
our procedure maintains a multiset of constraints. At a first glance, this is a merely pre-
sentational change. However, it has consequences for termination, performance, and re-
dundancy of the procedure.

Since the JP procedure never decomposes the common context of its only constraint, it
allows iteration or elimination to be applied at a free variable above the disagreement pair,
even if bindings were already applied below that free variable. This can lead to many dif-
ferent paths to the same unifier. In contrast, our procedure decides which binding to apply
to a flex-flex pair with the same head as soon as it is observed. Also, it explores the possi-
bility of not applying a binding and decomposing the pair. In either case, the flex-flex pair
is never revisited, which improves the performance and returns fewer redundant unifiers.
We show that this restriction prunes the search space without losing completeness.

Our procedure chooses child nodes based on only the heads of the selected unification
constraint. In contrast, the JP procedure tracks all the variables occurring in the common
context. Thus, lazy normalization and lazy variable substitution cannot be integrated in
the JP procedure a straightforward fashion. Moreover, as the JP procedure does not feature
a rule similar to Decompose, it always retraverses the already unified part of the problem,
resulting in poor performance on deep terms.

One of the main drawbacks of the JP procedure is that it features a highly explosive,
infinitely branching iteration rule. This rule is a more general version of Huet-style pro-
jection. Its universality enables finding elements of the CSU for flex-flex pairs, for which
Huet-style projection does not suffice. However, the JP procedure applies iteration in-
discriminately on both flex-flex and flex-rigid pairs. We discovered that our procedure
remains complete if iteration is applied only on flex-flex pairs, and Huet-style projection
only on flex-rigid ones. This helps our procedure terminate more often than the JP proce-
dure. As a side-effect, the restriction of our procedure to the preunification problem is a
graceful generalization of Huet procedure, with additional improvements such as oracles,
lazy substitution, and lazy 𝛽-reduction.

The bindings of our procedure contain further optimizations that are absent from the
JP procedure: The JP procedure applies eliminations for one parameter at a time, yielding
multiple paths to the same unifier. It applies imitations to flex-flex pairs, which we found
to be unnecessary. Similarly, we found out that tracking which rules introduced which
variables can avoid computing redundant unifiers: It is not necessary to apply iterations
and eliminations on elimination variables, and projections on identification variables.

Examples We present some examples that demonstrate advantages of our procedure.
The displayed branches of the constructed trees are not necessarily exhaustive. We abbre-
viate JP-style projection as JPProj, imitation as Imit, identification as Id, Decompose as Dc,
Dereference as Dr, Normalize𝛽 as N𝛽 , and Bind of a binding 𝑏 as B(𝑏). Transitions of the JP

²In JP’s formulation of iteration, it is not immediately obvious whether they intend to require iteration of argu-
ments of base type. However, their Definition 2.4 [86] shows that they do.

4.3 The Unification Procedure

4

63

procedure are denoted by ⟹. For the JP transitions we implicitly apply the generated
bindings and fully normalize terms, which significantly shortens JP derivations.

Example 4.1. The JP procedure does not terminate on the problem 𝐺 ?= f𝐺:(𝐺 ?= f𝐺, id) Imit⟹ (f𝐺′ ?= f2 𝐺′,𝜎1) Imit⟹ (f2 𝐺″ ?= f3 𝐺″,𝜎2) Imit⟹ ⋯
where 𝜎1 = {𝐺 ↦ 𝜆𝑥. f𝐺′} and 𝜎2 = {𝐺′ ↦ 𝜆𝑥. f𝐺″}𝜎1. By including any oracle that sup-
ports the first-order occurs check, such as the pattern oracle or the fixpoint oracle de-
scribed in Sect. 4.7, our procedure gracefully generalizes first-order unification:({𝐺 ?= f𝐺}, id) OracleFail⟶ ⊥
Example 4.2. The following derivation illustrates the advantage of the Decompose rule.

({h100 (𝐹 a) ?= h100 (𝐺 b)}, id) Dc100⟶ ({𝐹 a ?= 𝐺 b}, id) B(Id)⟶ ({𝐹 a ?= 𝐺 b},𝜎1)
Dr+N𝛽⟶ ({𝐻 a (𝐹 ′ a) ?= 𝐻 (𝐺′ b)b},𝜎1) Dc⟶ ({a ?= 𝐺′ b, 𝐹 ′ a ?= b},𝜎1)
B(Imit)⟶ ({a ?= 𝐺′ b, 𝐹 ′ a ?= b},𝜎2) Dr+N𝛽⟶ ({a ?= a, 𝐹 ′ a ?= b},𝜎2) Delete⟶ ({𝐹′ a ?= b},𝜎2)
B(Imit)⟶ ({𝐹′ a ?= b},𝜎3) Dr+N𝛽⟶ ({b ?= b},𝜎3) Delete⟶ (∅,𝜎3) Succeed⟶ 𝜎3

where 𝜎1 = {𝐹 ↦ 𝜆𝑥.𝐻 𝑥 (𝐹 ′ 𝑥),𝐺 ↦ 𝜆𝑦.𝐻 (𝐺′ 𝑦)𝑦}; 𝜎2 = {𝐺′ ↦ 𝜆𝑥.a}𝜎1; and 𝜎3 = {𝐹 ′ ↦𝜆𝑥.b}𝜎2. The JP procedure produces the same intermediate substitutions 𝜎1 to 𝜎3, but since
it does not decompose the terms, it retraverses the common context h100 [] at every step
to identify the contained disagreement pair:(h100 (𝐹 a) ?= h100 (𝐺 b), id) Id⟹ (h100 (𝐻 a (𝐹 ′ a)) ?= h100 (𝐻 (𝐺′ b)b),𝜎1)

Imit⟹ (h100 (𝐻 a (𝐹 ′ a)) ?= h100 (𝐻 ab),𝜎2) Imit⟹ (h100 (𝐻 ab) ?= h100 (𝐻 ab),𝜎3) Succeed⟹ 𝜎3
Example 4.3. Even when no oracles are used, our procedure performs better than the
JP procedure on small, simple problems. Consider the problem 𝐹 a ?= a, which has a two
element CSU: {𝐹 ↦ 𝜆𝑥.𝑥,𝐹 ↦ 𝜆𝑥.a}. Our procedure terminates, finding both unifiers:

({𝐹 a ?= a}, id) B(JP Proj)⟶ ({𝐹 a ?= a}, {𝐹 ↦ 𝜆𝑥.𝑥}) Dr+N𝛽⟶ ({a ?= a}, {𝐹 ↦ 𝜆𝑥.𝑥})
Delete⟶ (∅,{𝐹 ↦ 𝜆𝑥.𝑥}) Succeed⟶ {𝐹 ↦ 𝜆𝑥.𝑥}({𝐹 a ?= a}, id) B(Imit)⟶ ({𝐹 a ?= a}, {𝐹 ↦ 𝜆𝑥.a}) Dr+N𝛽⟶ ({a ?= a}, {𝐹 ↦ 𝜆𝑥.a})
Delete⟶ (∅,{𝐹 ↦ 𝜆𝑥.a}) Succeed⟶ {𝐹 ↦ 𝜆𝑥.a}

The JP procedure finds those two unifiers as well, but it does not terminate as it applies
iterations to 𝐹 .

4

64 Efficient Full Higher-Order Unification

Example 4.4. The search space restrictions also allow us to prune some redundant uni-
fiers. Consider the problem 𝐹 (𝐺 a) ?= 𝐹 b, where a and b are of base type. Our procedure
produces only one failing branch and the following two successful branches:

({𝐹 (𝐺 a) ?= 𝐹 b}, id) Dc⟶ ({𝐺 a ?= b}, id) B(Imit)⟶ ({𝐺 a ?= b}, {𝐺 ↦ 𝜆𝑥.b})
Dr+N𝛽⟶ ({b ?= b}, {𝐺 ↦ 𝜆𝑥.b}) Delete⟶ (∅,{𝐺 ↦ 𝜆𝑥.b}) Succeed⟶ {𝐺 ↦ 𝜆𝑥.b}({𝐹 (𝐺 a) ?= 𝐹 b}, id) B(Elim)⟶ ({𝐹 (𝐺 a) ?= 𝐹 b}, {𝐹 ↦ 𝜆𝑥.𝐹 ′})
Dr+N𝛽⟶ ({𝐹 ′ ?= 𝐹 ′}, {𝐹 ↦ 𝜆𝑥.𝐹 ′}) Delete⟶ (∅,{𝐹 ↦ 𝜆𝑥.𝐹 ′}) Succeed⟶ {𝐹 ↦ 𝜆𝑥.𝐹 ′}

The JP procedure additionally produces the following redundant unifier:

(𝐹 (𝐺 a) ?= 𝐹 b, id) JP Proj⟹ (𝐹 a = 𝐹 b, {𝐺 ↦ 𝜆𝑥.𝑥})
Elim⟹ (𝐹′ = 𝐹′, {𝐺 ↦ 𝜆𝑥.𝑥,𝐹 ↦ 𝜆𝑥.𝐹 ′}) Succeed⟹ {𝐺 ↦ 𝜆𝑥.𝑥,𝐹 ↦ 𝜆𝑥.𝐹 ′}

Moreover, the JP procedure does not terminate because an infinite number of iterations is
applicable at the root. Our procedure terminates in this case since we only apply iteration
binding for non base-type arguments, which 𝐹 does not have.

Pragmatic Variant We structured our procedure so that most of the unification ma-
chinery is contained in the Bind step. Modifying 𝒫 , we can sacrifice completeness and
obtain a pragmatic variant of the procedure that often performs better in practice. Our
preliminary experiments showed that using the mapping𝒫p defined as follows gives good
performance, while finding most useful unifiers:

• If the constraint is rigid-rigid, 𝒫p(𝜆𝑥. 𝑠 ?= 𝜆𝑥. 𝑡) = ∅.
• If the constraint is flex-rigid, let 𝒫p(𝜆𝑥.𝐹 𝑠 ?= 𝜆𝑥.𝑎 𝑡) be

– an imitation of 𝑎 for 𝐹 , if 𝑎 is a constant, and
– all Huet-style projections for 𝐹 if 𝐹 is not an identification variable.

• If the constraint is flex-flex and the heads are different, let 𝒫p(𝜆𝑥.𝐹 𝑠 ?= 𝜆𝑥.𝐺 𝑡) be
– an identification binding for 𝐹 and 𝐺, and
– all Huet-style projections for 𝐹 if 𝐹 is not an identification variable

• If the constraint is flex-flex and the heads are identical, we distinguish two cases:

– if the head is an elimination variable, 𝒫p(𝜆𝑥.𝐹 𝑠 ?= 𝜆𝑥.𝐹 𝑡) = ∅;
– otherwise, let 𝒫p(𝜆𝑥.𝐹 𝑠 ?= 𝜆𝑥.𝐹 𝑡) be the set of all eliminations bindings for 𝐹 .

4.4 Proof of Completeness

4

65

The pragmatic variant of our procedure removes all iteration bindings to enforce finite
branching. In addition, it imposes limits on the number of bindings applied, counting the
applications of bindings locally, per constraint, as follows. It is useful to distinguish the
Huet-style projection cases where 𝛼𝑖 is a base type (called simple projection), which always
reduces the problem size, and the cases where 𝛼𝑖 is a functional type (called functional
projection). We limit the number of applications of the following bindings: functional
projections, eliminations, imitations, and identifications. In addition, a limit on the total
number of applied bindings can be set. An elimination binding that removes 𝑘 arguments
counts as 𝑘 elimination steps. Thanks to these limits, the pragmatic variant terminates.

To fail as soon as any of the limits is reached, the pragmatic variant employs an addi-
tional oracle. If this oracle determines that the limits are reached and the constraint is of
the form 𝜆𝑥.𝐹 𝑠𝑚 ?= 𝜆𝑥.𝐺 𝑡𝑛 , it returns a trivial unifier – a substitution {𝐹 ↦ 𝜆𝑥𝑚.𝐻 ,𝐺 ↦𝜆𝑥𝑛.𝐻}, where 𝐻 is a fresh variable; if a limit is reached and the constraint is flex-rigid,
the oracle fails; if the limits are not reached, it reports that terms are outside its fragment.
The trivial unifier prevents the procedure from failing on easily unifiable flex-flex pairs.

Careful tuning of each limit optimizes the procedure for a specific class of problems.
For problems originating from proof assistants, a low unification depth usually suffices.
However, hard hand-crafted problems often need deeper unification.

4.4 Proof of Completeness
Like the JP procedure, our procedure, parameterized with 𝒫c, misses no unifiers:

Theorem4.5. The procedure described in Sect. 4.3 parameterized by𝒫c is complete, meaning
that the substitutions on the leaves of the constructed tree form a CSU. More precisely, let 𝐸 be
a multiset of constraints and let 𝑉 be the supply of fresh variables provided to the procedure.
Then for any unifier 𝜚 of 𝐸 there exists a derivation (𝐸, id) ⟶∗ 𝜎 and a substitution 𝜃 such
that for all free variables 𝑋 ∉ 𝑉 , we have 𝜚𝑋 = 𝜃𝜎𝑋 .

Taking a high-level view, this theorem is proved by incrementally defining states(𝐸𝑗 ,𝜎𝑗) and remainder substitutions 𝜚𝑗 starting with (𝐸0,𝜎0) = (𝐸, id) and 𝜚0 = 𝜚. The substi-
tution 𝜚𝑗 is what remains to be added to 𝜎𝑗 to reach 𝜚0. States are defined so that the shape
of the selected constraint from 𝐸𝑗 and the remainder substitution guide the choice of appli-
cable transition rule. Finally, a measure based on values of 𝐸𝑗 and 𝜚𝑗 that decreases with
each application of the rules is employed. Therefore, eventually, the target substitution 𝜎
will be reached.

In the remainder of this section, we view terms as 𝛼𝛽𝜂-equivalence classes, with the 𝜂-
long 𝛽-normal form as their canonical representative. Moreover, we consider all substitu-
tions to be fully applied. These assumptions are justified because all bindings depend only
on the heads of terms and hence replacing the lazy transitionsNormalize𝛼𝜂, Normalize𝛽 , and
Dereference by eager counterparts only affects the efficiency but not the overall behavior
of our procedure.

We now give the detailed completeness proof of Theorem 4.5. Our proof is an adap-
tation of the proof given by Jensen and Pietrzykowski [86]. Definitions and lemmas are
reused, but are combined together differently to suit our procedure. We start by listing
all reused definitions and lemmas from the original JP proof. The “JP” labels in their state-
ments refer to the corresponding lemmas and definitions from the original proof.

4

66 Efficient Full Higher-Order Unification

Definition 4.6 (JP D1.6). Given two terms 𝑡 and 𝑠 and their common context 𝐶 , we can
write 𝑡 as 𝐶[𝑡] and 𝑠 as 𝐶[𝑠] for some 𝑡 and 𝑠. The pairs (𝑠𝑗 , 𝑡𝑗) are called disagreement pairs.

Definition 4.7 (JP D3.1). Given two terms 𝑡 and 𝑠, let 𝜆𝑥. 𝑡′ and 𝜆𝑦. 𝑠′ be respective 𝛼-
equivalent terms such that their parameters 𝑥 and 𝑦 are disjoint. Then the disagreement
pairs of 𝑡′ and 𝑠′ are called opponent pairs in 𝑡 and 𝑠.
Example 4.8. To determine the opponent pairs of 𝜆𝑥.g (g𝑥) and 𝜆𝑥.g𝑥 , we first 𝛼-rename
the second term to 𝜆𝑦.g𝑦 . Then, we identify the common context of g (g𝑥) and g𝑦 as g!,
which leads us to the opponent pair (g𝑥,𝑦).
Lemma 4.9 (JP L3.3 (1)). Let 𝜚 be a substitution and𝑋 , 𝑌 be free variables such that 𝜚(𝑋 𝑠) =𝜚(𝑌 𝑡) for some term tuples 𝑠 and 𝑡 . Then for every opponent pair 𝑢, 𝑣 in 𝜚𝑋 and 𝜚𝑌 (Definition
4.7), the head of 𝑢 or 𝑣 is a parameter of 𝜚𝑋 or 𝜚𝑌 .

Example 4.10. Let 𝜚 be the substitution {𝑋 ↦ 𝜆𝑥. f𝑥,𝑌 ↦ 𝜆𝑥. 𝑥}. Clearly, 𝜚 unifies the
problem 𝑋 a ?= 𝑌 (fa). The opponent pair for 𝜚𝑋 and 𝜚 𝑌 is (f𝑥,𝑦), which clearly adheres to
the conclusion of Lemma 4.9. Intuitively, one of the consequences of this lemma is that any
solution for flex-flex problems that does not mention parameters will not have opponent
pairs. For example, one solution for the problem 𝑋 a ?= 𝑌 (fa) is 𝜚 = {𝑋 ↦ 𝜆𝑥.c,𝑌 ↦ 𝜆𝑥.c},
which has no opponent pairs.

In contrast to applied constants, applied variables should not be eagerly decomposed.
For a constant f, if f 𝑠 ?= f 𝑡 has a unifier, that unifier must clearly also unify 𝑠𝑖 ?= 𝑡𝑖 for each 𝑖.
For a free variable 𝑋 , a unifier of 𝑋 𝑠 ?= 𝑋 𝑡 does not necessarily unify 𝑠𝑖 ?= 𝑡𝑖 . For example,{𝑋 ↦ 𝜆𝑥. a} is a unifier that does refer to any of the arguments of 𝑋 . The concept of 𝜔-
simplicity is a criterion on unifiers that captures some of the cases where eager decompo-
sition is possible. Non-𝜔-simplicity on the other hand is the main trigger of Iteration—the
most explosive binding of our procedure.

Definition 4.11 (JP D3.2). An occurrence of a parameter 𝑥 of term 𝑡 in the body of 𝑡 is𝜔-simple if both

1. the arguments of 𝑥 are distinct and are exactly (the 𝜂-long forms of) all of the vari-
ables bound in the body of 𝑡 , and

2. this occurrence of 𝑥 is not in an argument of any parameter of 𝑡 .
Example 4.12 (JP E1). Term 𝜆𝑥𝑦. f𝒙 𝒚 has two and term 𝜆𝑥.g (𝜆𝑦. 𝒙 𝑦) has one 𝜔-simple
occurrence, denoted in boldface. In the following two examples, boldface occurrences are
not 𝜔-simple: 𝜆𝑥.g (𝜆𝑦. f𝑦 𝒙), 𝜆𝑥𝑦.h (𝑥 𝒚). In the first case 𝑥 is not applied to parameter 𝑦
and in the second 𝑦 occurs as an argument to 𝑥 .

Definition 4.11 is slightly too restrictive for our purposes. It is unfortunate that condi-
tion 1 requires 𝑥 to be applied to all instead of just some of the bound variables. The JP
proof would probably work with such a relaxation, and the definition would then cover all
cases where eager decomposition is possible. However, to reuse the JP lemmas, we stick
to the original notion of 𝜔-simplicity and introduce the following relaxation:

4.4 Proof of Completeness

4

67

Definition 4.13. An occurrence of a parameter 𝑥 of term 𝑡 in the body of 𝑡 is base-simple
if it is 𝜔-simple or both

1. 𝑥 is of base type, and

2. this occurrence of 𝑥 is not in an argument of any parameter of 𝑡 .
Lemma 4.14. Let 𝑠 have parameters 𝑥 and a subterm 𝑥𝑗 𝑣 where this occurrence of 𝑥𝑗 is base-
simple. Then for any sequence 𝑡 of (at least 𝑗) terms, the body of 𝑡𝑗 is a subterm of 𝑠 𝑡 (after
normalization) at the position of 𝑥𝑗 𝑣 up to renaming of the parameters of 𝑡𝑗 . To compare
positions of 𝑠 and 𝑠 𝑡 , we ignore the outermost 𝜆-binders of s.
Proof. Consider the process of 𝛽-normalizing 𝑠 𝑡 . After substituting terms 𝑡 into the body
of 𝑠, a further reduction can only take place when some 𝑡𝑘 is an abstraction that gets
arguments in 𝑠. The arguments 𝑣 to the 𝑥𝑗 are distinct variables bound in the body of 𝑠.
This follows easily from either case of the definition of base-simplicity. So 𝑡𝑗 is applied to
the unmodified 𝑣 after substituting terms 𝑡 into the body of 𝑠. Base-simplicity also implies
that 𝑡𝑗 𝑣 does not occur in an argument to another 𝑡𝑘 . Hence only the reduction of 𝑡𝑗 𝑣
itself affects this subterm. The variables 𝑣 match the parameter count of 𝑡𝑗 because we
consider the 𝜂-long form of 𝑡𝑗 ; so 𝑡𝑗 𝑣 reduces to the body of 𝑡𝑗 (modulo renaming). The
position is obviously that of 𝑥𝑗 𝑣 . !

Lemma 4.15 (JP C3.4 strengthened). Let 𝜚 be a substitution and 𝑋 a free variable. If𝜚(𝜆𝑥.𝑋 𝑠) = 𝜚(𝜆𝑥.𝑋 𝑡) and some occurrence of the 𝑖th parameter of 𝜚𝑋 is base-simple, then𝜚𝑠𝑖 = 𝜚𝑡𝑖 .
Proof. By Lemma 4.14, 𝜚𝑠𝑖 occurs in 𝜚𝑋(𝜚𝑠) at a certain position that depends only on 𝜚𝑋 .
Similarly 𝜚𝑡𝑖 occurs in 𝜚𝑋(𝜚𝑡) = 𝜚𝑋(𝜚𝑠) at the same position, and hence 𝜚𝑠𝑖 = 𝜚𝑡𝑖 . !

We define more properties to determine which binding to apply to a given constraint.
Roughly speaking, the simple comparison form will trigger identification bindings, pro-
jectivity will trigger Huet-style projections, and simple projectivity will trigger JP-style
projections.

Definition 4.16 (JP D3.4). We say that 𝑠 and 𝑡 are in simple comparison form if all𝜔-simple
heads of opponent pairs in 𝑠 and 𝑡 are distinct, and each opponent pair has an 𝜔-simple
head.

Definition 4.17 (JP D3.5). A term 𝑡 is called projective if the head of 𝑡 is a parameter of 𝑡 .
If the whole body is just the parameter, then 𝑡 is called simply projective.

A central part of the proof is to find a suitable measure for the remaining problem
size. Showing that the measure is strictly decreasing and well founded guarantees that
the procedure finds a suitable substitution in finitely many steps. We reuse the measure
for remainder substitutions from JP [86], but embed it into a lexicographic measure to
handle the decomposition steps and oracles of our procedure.

4

68 Efficient Full Higher-Order Unification

Definition 4.18 (JP D3.7). The free weight of a term 𝑡 is the total number of occurrences of
free variables and constants in 𝑡 . The bound weight of 𝑡 is the total number of occurrences
(excluding occurrences 𝜆𝑥) of bound variables in 𝑡 , but with a particular exemption: if
a prefix variable 𝑢 has one or more 𝜔-simple occurrences in the body, then one such
occurrence and its arguments are not counted. It does not matter which occurrence is
not counted because in 𝜂-long form the bound weight of the arguments of an 𝜔-simple
variable is the same for all occurrences of that variable.
Definition 4.19 (JP D3.8). For multisets 𝐸 of unification constraints and substitutions 𝜚,
our measure on pairs (𝐸,𝜚) is the lexicographic comparison of
A the sum of the sizes of the terms in 𝜚𝐸
B the sum over the free weight of 𝜚𝐹 , for all variables 𝐹 mapped by 𝜚
C the sum over the bound weight of 𝜚𝐹 , for all variables 𝐹 mapped by 𝜚
D the sum over the number of parameters of 𝜚𝐹 , for all variables 𝐹 mapped by 𝜚
We denote the quadruple containing these numbers as ord(𝐸,𝜚). We denote the triple
containing only the last three components of ord(𝐸,𝜚) as ord𝜚. We write < for the lexico-
graphic comparison of these triples.

The next six lemmas correspond to the bindings of our procedure and sufficient condi-
tions for the binding to bring us closer to a given solution. This is expressed as a decrease of
the ord measure of the remainder. In each of these lemmas, let 𝑢 be a term with a variable
head 𝑎 and 𝑣 a term with an arbitrary head 𝑏. Let 𝜚 be a unifier of 𝑢 and 𝑣 . The conclusion,
let us call it C, is always the same: there exists a binding 𝛿 applicable to the problem 𝑢 ?= 𝑣 ,
and there exists a substitution 𝜚′ such that ord𝜚′ < ord𝜚 and for all variables 𝑋 except the
fresh variables introduced by the binding we have 𝜚𝑋 = 𝜚′ 𝛿𝑋 . For most of these lemmas,
we refer to JP [86] for proofs. Although JP only claim 𝜚𝑋 = 𝜚′ 𝛿𝑋 for variables 𝑋 mapped
by 𝜚, inspection of their proofs shows that the equality holds for all 𝑋 except the fresh vari-
ables introduced by the binding. Moreover, some of our bindings havemore preconditions,
yielding additional orthogonal hypotheses in our lemmas, which we address below.
Lemma 4.20 (JP L3.9). If 𝑎 = 𝑏 is not an elimination variable and 𝜚𝑎 discards any of its
parameters, then C by elimination. Moreover, for the elimination variable 𝐺 introduced by
this elimination, 𝜚′𝐺 discards none of its parameters and has the body of 𝜚𝑎.
Proof. Let 𝜚𝑎 = 𝜆𝑥. 𝑡 and let (𝑥𝑗𝑘)𝑖𝑘=1 be the subsequence of 𝑥 consisting of those variables
which occur in the body 𝑡 . It is a strict subsequence, since 𝜚𝑎 is assumed to discard some
parameter. Since the equal heads 𝑎 = 𝑏 of the constraint 𝑢 ?= 𝑣 are not elimination variables,
elimination for (𝑗𝑘)𝑖𝑘=1 can be applied. Let 𝛿 = {𝑎 ↦ 𝜆𝑥.𝐺 𝑥𝑗1 … 𝑥𝑗𝑖 } be the corresponding
binding. Define 𝜚′ to be like 𝜚 except𝜚′𝑎 = 𝑎 and 𝜚′𝐺 = 𝜆𝑥𝑗1 ...𝑥𝑗𝑖 . 𝑡 .
Obviously 𝜚′𝐺 is a closed term and 𝜚𝑋 = 𝜚′ 𝛿𝑋 holds for all 𝑋 ≠𝐺. Moreover ord𝜚′ < ord𝜚,
because free and bound weights stay the same (𝜚𝑎 and 𝜚′𝐺 have the same body 𝑡) whereas
the number of parameters strictly decreases. The definition of (𝑗𝑘)𝑖𝑘=1 implies that 𝜚′𝐺
discards none of its parameters. !

4.4 Proof of Completeness

4

69

Lemma 4.21 (JP L3.10). Assume that there exists a parameter 𝑥 of 𝜚𝑎 such that 𝑥 has a
non-𝜔-simple (Definition 4.11) occurrence in 𝜚𝑎, which is not below another parameter, or
such that 𝑥 has at least two 𝜔-simple occurrences in 𝜚𝑎. Moreover, if 𝑎 = 𝑏, to make iteration
applicable, 𝑎 must not be an elimination variable, and 𝑥 must be of functional type. Then C
is achieved by iteration.

Lemma 4.22 (JP L3.11). Assume that 𝑎 and 𝑏 are different free variables. If 𝜚𝑎 is simply pro-
jective (Definition 4.17) and 𝑎 is not an identification variable, then C by JP-style projection.

Lemma 4.23 (JP L3.12). If 𝜚𝑎 is not projective and 𝑏 is rigid, then C by imitation.

Lemma 4.24 (JP L3.13). Let 𝑎 ≠ 𝑏. Assume that 𝜚𝑎 ≠ 𝑎 and 𝜚𝑏 ≠ 𝑏 are in simple comparison
form (Definition 4.16) and neither is projective. Then C by identification. Moreover, 𝜚′𝐻 is
not projective, where 𝐻 is the identification variable introduced by this application of the
identification binding.

Proof. This is JP’s Lemma 3.13, plus the claim that 𝜚′𝐻 is not projective. Inspecting the
proof of that lemma, it is obvious that 𝜚′𝐻 cannot be projective because 𝜚𝑎 and 𝜚𝑏 are not
projective. !

Lemma 4.25. Assume that 𝜚𝑎 is projective (Definition 4.17), 𝑎 is not an identification vari-
able, and 𝑏 is rigid. Then C by Huet-style projection.

Proof. Since 𝜚𝑎 is projective, we have 𝜚𝑎 = 𝜆𝑥𝑛.𝑥𝑘 𝑡𝑚 for some 𝑘 and some terms 𝑡𝑚 . If 𝜚𝑎
is also simply projective, then 𝑥𝑘 must be nonfunctional and since Huet-style projection
and JP-style projection coincide in that case, Lemma 4.22 applies. Hence, in the following
we may assume that 𝜚𝑎 is not simply projective, i.e., that 𝑚 > 0.

Let 𝛿 be the Huet-style projection binding:𝛿 = {𝑎 ↦ 𝜆𝑥𝑛.𝑥𝑖 (𝐹1 𝑥𝑛) … (𝐹𝑚 𝑥𝑛)}
for fresh variables 𝐹1,…,𝐹𝑚 . This binding is applicable because 𝑏 is rigid. Let 𝜚′ be the
same as 𝜚 except that we set 𝜚′𝑎 = 𝑎 and for each 1 ≤ 𝑗 ≤ 𝑚 we set𝜚′𝐹𝑗 = 𝜆𝑥𝑛. 𝑡𝑗
It remains to show that ord𝜚′ < ord𝜚. The free weight of 𝜚𝑎 is the same as the sum of
the free weights of 𝜚′𝐹𝑗 for 1 ≤ 𝑗 ≤ 𝑚. Thus, the free weight is the same for 𝜚 and 𝜚′. The
bound weight of 𝜚𝑎 however is exactly 1 larger than the sum of the bound weights of 𝜚′𝐹𝑗
for 1 ≤ 𝑗 ≤ 𝑚 because of the additional occurrence of 𝑥𝑘 in 𝜚𝑎. The exemption for 𝜔-simple
occurrences in the definition of the bound weight cannot be triggered by this occurrence
of 𝑥𝑘 because 𝑚 > 0 and thus 𝑥𝑘 is not 𝜔-simple. It follows that ord𝜚′ < ord𝜚. !

We are now ready to prove the completeness theorem (Theorem 4.5).

Proof. Let 𝐸 be a multiset of constraints and let 𝑉 be the supply of fresh variables provided
to our procedure. Let 𝜚 be a unifier of 𝐸. We must show that there exist a derivation(𝐸, id)⟶∗ 𝜎 and a substitution 𝜃 such that for all free variables 𝑋 ∉ 𝑉 , we have 𝜚𝑋 = 𝜃𝜎𝑋 .

Let 𝐸0 = 𝐸 and 𝜎0 = id. Let 𝜚0 = 𝜏𝜚 for some renaming 𝜏 , such that every free variable
occurring in 𝜚0𝐸0 does not occur in 𝐸0 and is not contained in 𝑉 . Then 𝜚0 unifies 𝐸0

4

70 Efficient Full Higher-Order Unification

because 𝜚 unifies 𝐸 by assumption. Moreover, 𝜚0 = 𝜚0𝜎0. We proceed to inductively define𝐸𝑗 , 𝜎𝑗 and 𝜚𝑗 until we reach some 𝑗 such that 𝐸𝑗 = ∅. To guarantee well-foundedness, we
ensure that the measure ord(𝜚𝑗 ,𝐸𝑗) decreases with each step. We maintain the following
invariants for all 𝑗:

• (𝐸𝑗 ,𝜎𝑗) ⟶ (𝐸𝑗+1,𝜎𝑗+1);
• ord(𝐸𝑗 ,𝜚𝑗) > ord(𝐸𝑗+1,𝜚𝑗+1);
• 𝜚𝑗 unifies 𝐸𝑗 ;
• 𝜚0𝑋 = 𝜚𝑗𝜎𝑗𝑋 for all free variables 𝑋 ∉ 𝑉 ;

• every free variable occurring in 𝜚𝑗𝐸𝑗 does not occur in 𝐸𝑗 and is not contained in 𝑉 ;

• for every identification variable 𝑋 , 𝜚𝑗𝑋 is not projective; and

• for every elimination variable 𝑋 , each parameter of 𝜚𝑗𝑋 has occurrences in 𝜚𝑗𝑋 , all
of which are base-simple.

If 𝐸𝑗 ≠ ∅, let 𝑢 ?= 𝑣 be the selected constraint 𝑆(𝐸𝑗) in 𝐸𝑗 .
First assume that an oracle is able to find a CSU for the constraint 𝑢 ?= 𝑣 . Since 𝜚𝑗

unifies 𝑢 and 𝑣 , by the definition of a CSU, the CSU discovered by the oracle contains a
unifier 𝛿 of 𝑢 and 𝑣 such that there exists a 𝜚𝑗+1 and for all free variables 𝑋 except for
the auxiliary variables of the CSU we have 𝜚𝑗𝑋 = 𝜚𝑗+1 𝛿𝑋 . Thus, an OracleSucc transition
is applicable and yields the node (𝐸𝑗+1,𝜎𝑗+1) = (𝛿(𝐸𝑗 ⧵ {𝑢 ?= 𝑣}),𝛿 𝜎𝑗). Therefore we have
a strict containment 𝜚𝑗+1𝐸𝑗+1 ⊂ 𝜚𝑗+1 𝛿 𝐸𝑗 = 𝜚𝑗𝐸𝑗 . This implies ord(𝐸𝑗+1,𝜚𝑗+1) < ord(𝐸𝑗 ,𝜚𝑗).
It also shows that the constraints 𝜚𝑗+1𝐸𝑗+1 are unified when 𝜚𝑗𝐸𝑗 are. Since the auxiliary
variables introduced by OracleSucc are fresh, they can occur neither in 𝐸𝑗 nor in 𝜎𝑗𝑋 for
any 𝑋 ∉ 𝑉 . Hence, we have 𝜚0𝑋 = 𝜚𝑗𝜎𝑗𝑋 = 𝜚𝑗+1 𝛿 𝜎𝑗𝑋 = 𝜚𝑗+1𝜎𝑗+1𝑋 for all free variables𝑋 ∉ 𝑉 . Any free variable occurring in 𝜚𝑗+1𝐸𝑗+1 cannot not occur in 𝐸𝑗+1 and is not con-
tained in 𝑉 because 𝜚𝑗+1𝐸𝑗+1 ⊂ 𝜚𝑗𝐸𝑗 and the variables in 𝐸𝑗+1 = 𝛿(𝐸𝑗 ⧵ {𝑢 ?= 𝑣}) are either
variables already present in 𝐸𝑗 or fresh variables introduced byOracleSucc. New identifica-
tion or elimination variables are not introduced; so their properties are preserved. Hence
all invariants are preserved.

Otherwise we proceed by a case distinction on the form of 𝑢 ?= 𝑣 . Typically, one of
the Lemmas 4.20–4.25 will be applicable. Any one of them gives substitutions 𝜚′ and𝛿 with properties that let us define 𝐸𝑗+1 = 𝛿𝐸𝑗 , 𝜎𝑗+1 = 𝛿 𝜎𝑗 and 𝜚𝑗+1 = 𝜚′. The problem
size always strictly decreases, because these lemmas imply 𝜚𝑗+1𝐸𝑗+1 = 𝜚𝑗+1𝛿𝐸𝑗 = 𝜚𝑗𝐸𝑗 and
ord𝜚𝑗+1 = ord𝜚′ < ord𝜚𝑗 . Regarding the other invariants, the former equation guarantees
that 𝜚𝑗+1 unifies 𝐸𝑗+1, and 𝜚0𝑋 = 𝜚𝑗 𝜎𝑗𝑋 = 𝜚𝑗+1 𝛿 𝜎𝑗𝑋 = 𝜚𝑗+1 𝜎𝑗+1𝑋 for all 𝑋 ∉ 𝑉 because
the fresh variables introduced by the binding cannot occur in 𝜎𝑗𝑋 for any 𝑋 ∉ 𝑉 . The
conditions on variables must be checked separately when new ones are introduced. Let 𝑎
be the head of 𝑢 = 𝜆𝑥.𝑎𝑢 and 𝑏 be the head of 𝑣 = 𝜆𝑥.𝑏 𝑣 . Consider the following cases:𝑢 and 𝑣 have the same head symbol 𝑎 = 𝑏

1. Suppose that 𝜚𝑗𝑎 has a parameter with a non-base-simple occurrence. By
one of the induction invariants, 𝑎 is not an elimination variable. Among all

4.4 Proof of Completeness

4

71

non-base-simple occurrences of parameters in 𝜚𝑗𝑎, choose the leftmost one,
which we call 𝑥 . This occurrence of 𝑥 cannot be below another parameter, be-
cause having 𝑥 occur in one of its arguments would make that other parameter
non-base-simple, contradicting the occurrence of 𝑥 being leftmost. Thus 𝑥 is
neither base-simple nor below another parameter; so 𝑥 is of functional type.
Moreover, non-base-simplicity implies non-𝜔-simplicity. Hence, we can apply
Lemma 4.21 (iteration).

2. Otherwise suppose that 𝜚𝑗𝑎 discards some of its parameters. By one of the
induction invariants, 𝜚𝑗𝑎 is not an elimination variable. Hence Lemma 4.20
(elimination) applies. The newly introduced elimination variable 𝐺 satisfies
the required invariants, because Lemma 4.20 guarantees that 𝜚𝑗+1𝐺 uses its
parameters and shares the body with 𝜚𝑗𝑎 which by assumption of this case
contains only base-simple occurrences.

3. Otherwise every parameter of 𝜚𝑗𝑎 has occurrences and all of them are base-
simple. We are going to show that Decompose is a valid transition and de-
creases 𝜚𝑗𝐸𝑗 . By Lemma 4.15 we conclude from 𝜚𝑗𝑢 = 𝜚𝑗𝑣 that 𝜚𝑗𝑢𝑖 = 𝜚𝑗𝑣𝑖 for
every 𝑖. Hence the new constraints 𝐸𝑗+1 = 𝐸𝑗 ⧵ {𝑢 ?= 𝑣} ∪ {𝑢𝑖 ?= 𝑣𝑖 | for all 𝑖} after
Decompose are unified by 𝜚𝑗 . This allows us to define 𝜚𝑗+1 = 𝜚𝑗 and 𝜎𝑗+1 = 𝜎𝑗 .
To check that 𝜚𝑗+1𝐸𝑗+1 = 𝜚𝑗𝐸𝑗+1 is smaller than 𝜚𝑗𝐸𝑗 it suffices to check that con-
straints 𝜚𝑗𝑢𝑖 ?= 𝜚𝑗𝑣𝑖 together are smaller than 𝜚𝑗𝑢 ?= 𝜚𝑗𝑣 . Since all parameters
of 𝜚𝑗𝑎 have base-simple occurrences, 𝜚𝑗𝑢𝑖 is a subterm of 𝜚𝑗𝑢 = 𝜆𝑥.𝜚𝑗𝑎 (𝜚𝑗𝑢)
by Lemma 4.14. Similarly for 𝜚𝑗𝑣 . It follows that 𝜚𝑗+1𝐸𝑗+1 is smaller than 𝜚𝑗𝐸𝑗 .
Since 𝜚𝑗+1 = 𝜚𝑗 and 𝜎𝑗+1 = 𝜎𝑗 , the other invariants are obviously preserved.𝑢 ?= 𝑣 is a flex-flex pair with different heads

5. First, suppose that 𝜚𝑗𝑎 or 𝜚𝑗𝑏 is simply projective (Definition 4.17). By the
induction hypothesis, the simply projective head cannot be an identification
variable. Thus Lemma 4.22 (JP-style projection) applies.

6. Otherwise suppose that 𝜚𝑗𝑎 is projective but not simply. Then the head of 𝜚𝑗𝑎
is some parameter 𝑥𝑘 . But this occurrence cannot be 𝜔-simple because it has
arguments which cannot be bound above the head 𝑥𝑘 . Thus Lemma 4.21 (iter-
ation) applies. If 𝜚𝑗𝑏 is projective but not simply, the same argument applies.

7. Otherwise suppose that 𝜚𝑗𝑎, 𝜚𝑗𝑏 are in simple comparison form (Definition
4.16). By one of the induction invariants, the free variables occurring in 𝜚𝑗𝐸𝑗
do not occur in 𝐸𝑗 . Thus 𝜚𝑗𝑎 ≠ 𝑎 and 𝜚𝑗𝑏 ≠ 𝑏. Then Lemma 4.24 (identification)
applies.

8. Otherwise 𝜚𝑗𝑎, 𝜚𝑗𝑏 are not in simple comparison form. By Lemma 4.9 and by
the definition of simple comparison form, there is some opponent pair 𝑥𝑘 𝑟 , 𝑏
in 𝜚𝑗𝑎 and 𝜚𝑗𝑏 (after possibly swapping 𝑢 and 𝑣) where either the occurrence of𝑥𝑘 is not 𝜔-simple (Definition 4.11) or else 𝑥𝑘 has another 𝜔-simple occurrence
in the body of 𝜚𝑗𝑎. Then Lemma 4.21 (iteration) applies.𝑢 ?= 𝑣 is a flex-rigid pair Without loss of generality, assume that 𝑎 is flex and 𝑏 is rigid.

4

72 Efficient Full Higher-Order Unification

9. Suppose first that 𝜚𝑗𝑎 is projective. By one of the induction invariants, 𝑎 cannot
be an identification variable. Thus Lemma 4.25 (Huet-style projection) applies.

10. Otherwise 𝜚𝑗𝑎 is not projective. The head of 𝜚𝑗𝑎 must be 𝑏 because 𝑏 is rigid,
and 𝜚𝑗 unifies 𝑢 and 𝑣 . As 𝜚𝑗𝑎 is not projective, that means that 𝑏 is not a bound
variable. Thus, 𝑏 must be a constant. Then Lemma 4.23 (imitation) applies.

We have now constructed a run (𝐸0,𝜎0) ⟶ (𝐸1,𝜎1) ⟶ (𝐸2,𝜎2) ⟶ ⋯ of the procedure.
This run cannot be infinite because the measure ord(𝐸𝑗 ,𝜚𝑗) strictly decreases as 𝑗 increases.
Hence, at some point we reach a 𝑗 such that 𝐸𝑗 = ∅ and 𝜚0𝑋 = 𝜚𝑗 𝜎𝑗𝑋 for all 𝑋 ∉ 𝑉 . There-
fore, (𝐸, id)⟶∗ (∅,𝜎𝑗)⟶𝜎𝑗 , and 𝜚𝑋 = 𝜏−1 𝜚𝑗 𝜎𝑗𝑋 for all𝑋 ∉ 𝑉 , completing the proof. !

4.5 A New Decidable Fragment
We discovered a new fragment that admits a finite CSU and a simple oracle. The oracle is
based onwork by Prehofer and the PT procedure [133], an adaptation of the preunification
procedure by Snyder and Gallier [150] (which itself is an adaptation of Huet’s procedure).
PT transforms an initial multiset of constraints 𝐸0 by applying bindings 𝜚. If there is a
sequence 𝐸0 ⟹𝜚1 ⋯ ⟹𝜚𝑛 𝐸𝑛 such that 𝐸𝑛 has only flex-flex constraints, we say that
PT produces a preunifier 𝜎 = 𝜚𝑛…𝜚1 with constraints 𝐸𝑛 . A sequence fails if 𝐸𝑛 = ⊥. As in
the previous section, we consider all terms to be 𝛼𝛽𝜂-equivalence classes with the 𝜂-long𝛽-reduced form as their canonical representative. Unlike previously, in this section we
view unification constraints 𝑠 ?= 𝑡 as ordered pairs. The PT transition rules, adapted for
our presentation style, are as follows:
Deletion { 𝑠 ?= 𝑠 } ⊎𝐸 ⟹id 𝐸
Decomposition { 𝜆𝑥.𝑎 𝑠𝑚 ?= 𝜆𝑥.𝑎 𝑡𝑚 } ⊎𝐸 ⟹id {𝑠1 ?= 𝑡1,…, 𝑠𝑚 ?= 𝑡𝑚} ⊎𝐸

where 𝑎 is rigid

Failure { 𝜆𝑥.𝑎 𝑠 ?= 𝜆𝑥.𝑏 𝑡 } ⊎𝐸 ⟹id ⊥
where 𝑎 and 𝑏 are different rigid heads

SolutionL { 𝜆𝑥.𝐹 𝑥 ?= 𝜆𝑥. 𝑡 } ⊎𝐸 ⟹𝜚 𝜚𝐸
where 𝐹 does not occur in 𝑡 , 𝑡 does not have a flex head, and 𝜚 = {𝐹 ↦ 𝜆𝑥. 𝑡}

SolutionR { 𝜆𝑥. 𝑡 ?= 𝜆𝑥.𝐹 𝑥 } ⊎𝐸 ⟹𝜚 𝜚𝐸
where 𝐹 does not occur in 𝑡 , 𝑡 does not have a flex head, and 𝜚 = {𝐹 ↦ 𝜆𝑥. 𝑡}

ImitationL { 𝜆𝑥.𝐹 𝑠𝑚 ?= 𝜆𝑥. f 𝑡𝑛 } ⊎𝐸 ⟹𝜚 𝜚({𝐺1 𝑠𝑚 ?= 𝑡1,…,𝐺𝑛 𝑠𝑚 ?= 𝑡𝑛} ⊎𝐸)
where 𝜚 = {𝐹 ↦ 𝜆𝑥𝑚. f (𝐺1 𝑥𝑚)…(𝐺𝑛 𝑥𝑚)}, 𝐺𝑛 are correctly typed fresh variables

ImitationR { 𝜆𝑥. f 𝑡𝑛 ?= 𝜆𝑥.𝐹 𝑠𝑚 } ⊎𝐸 ⟹𝜚 𝜚({𝑡1 ?= 𝐺1 𝑠𝑚,…, 𝑡𝑛 ?= 𝐺𝑛 𝑠𝑚} ⊎𝐸)
where 𝜚 = {𝐹 ↦ 𝜆𝑥𝑚. f (𝐺1 𝑥𝑚)…(𝐺𝑛 𝑥𝑚)}, 𝐺𝑛 are correctly typed fresh variables

ProjectionL { 𝜆𝑥.𝐹 𝑠𝑚 ?= 𝜆𝑥.𝑎 𝑡 } ⊎𝐸 ⟹𝜚 𝜚({𝑠𝑖 (𝐺1 𝑠𝑚)…(𝐺𝑗 𝑠𝑚) ?= 𝑎 𝑡} ⊎𝐸)
where 𝜚 = {𝐹 ↦ 𝜆𝑥𝑚.𝑥𝑖 (𝐺1 𝑥𝑚)…(𝐺𝑗 𝑥𝑚)}, 𝐺𝑗 are correctly typed fresh variables

ProjectionR { 𝜆𝑥.𝑎 𝑡 ?= 𝜆𝑥.𝐹 𝑠𝑚 } ⊎𝐸 ⟹𝜚 𝜚({𝑎 𝑡 ?= 𝑠𝑖 (𝐺1 𝑠𝑚)…(𝐺𝑗 𝑠𝑚)} ⊎𝐸)
where 𝜚 = {𝐹 ↦ 𝜆𝑥𝑚.𝑥𝑖 (𝐺1 𝑥𝑚)…(𝐺𝑗 𝑥𝑚)}, 𝐺𝑗 are correctly typed fresh variables

4.5 A New Decidable Fragment

4

73

The grayed constraints are required to be selected by a given selection function 𝑆. We call𝑆 admissible if it selects only flex-rigid constraints, and prioritizes selection of constraints
applicable for Failure and Decomposition and of descendant constraints of ProjectionL and
ProjectionR transitions with 𝑗 = 0 (i.e., for 𝑥𝑖 of base type), in that order of priority. In the
remainder of this section we consider only admissible selection functions, an assumption
that Prehofer also makes implicitly in his thesis. Additionally, whenever we compare mul-
tisets, we use the multiset ordering defined by Dershowitz and Manna [54]. As above, we
assume that the fresh variables are taken from an infinite supply 𝑉 of fresh variables that
are different from the variables in the initial problem and never reused.

The following lemma states that PT is complete for preunification:

Lemma 4.26. Let 𝜚 be a unifier of a multiset of constraints 𝐸0. Then PT produces a preunifier𝜎 with constraints 𝐸𝑛 , and there exists a unifier 𝜃 of 𝐸𝑛 such that 𝜚𝑋 = 𝜃𝜎𝑋 for all 𝑋 that
are not contained in the supply 𝑉 of fresh variables.

Proof. This lemma is a refinement of Lemma 4.1.7 from Prehofer’s PhD thesis [133], and
this proof closely follows the proof of that lemma. Compared to the lemma fromPrehofer’s
thesis, our lemma additionally establishes the relationship of the unifier 𝜃 of the resulting
flex-flex constraint set 𝐸𝑛 with the preunifier 𝜎 and the target unifier 𝜚.

We prove the lemma by induction using a well-founded measure on (𝜚,𝐸0). The order-
ing is the lexicographic comparison of the following properties:

A sum of the abstraction-free sizes of the terms 𝜚𝐹 for each variable 𝐹 mapped by 𝜚
B multiset of the sizes of constraints in 𝐸0
Here, the abstraction-free size is inductively defined by afsize(𝐹) = 1; afsize(𝑥) = 1; afsize(f)= 1; afsize(𝑠 𝑡) = afsize(𝑠) + afsize(𝑡); afsize(𝜆𝑥. 𝑠) = afsize(𝑠).

If 𝐸0 consists only of flex-flex constraints, then we can take an empty transition se-
quence (i.e., 𝜎 = id) and 𝜃 = 𝜚. Otherwise, there exists a constraint that is selected by an
admissible selection function. We show that for each such constraint, there is going to be
a PT transition bringing us closer to the desired preunifier.

Let 𝐸0 = { 𝑠 ?= 𝑡 } ⊎ 𝐸′0. Since 𝑠 ?= 𝑡 is selected, at least one of 𝑠 and 𝑡 must have a rigid
head. We distinguish several cases based on the form of 𝑠 ?= 𝑡 :

• 𝑠 ?= 𝑠: in this case, Deletion applies. This transition does not alter 𝜚, but removes
an equation obtaining 𝐸1 which is smaller than 𝐸0 and still unifiable by 𝜚. By the
induction hypothesis, the preunifier is reachable.

• 𝜆𝑥.𝑎 𝑠𝑚 ?= 𝜆𝑥.𝑏 𝑡𝑛 , where 𝑎 and 𝑏 are rigid: since 𝜚 is a unifier, then 𝑎 = 𝑏, 𝑛 = 𝑚, and
Decomposition applies. Similarly to the above case, we conclude that the preunifier
is reachable.

• 𝜆𝑥.𝐹 𝑥 ?= 𝜆𝑥. 𝑡 where 𝑡 has a rigid head and 𝐹 does not occur in 𝑡 : SolutionL applies.
Huet showed [82, proof of L5.1] that in this case 𝜚 = 𝜚𝜎1, where 𝜎1 = {𝐹 ↦ 𝜆𝑥. 𝑡}. Let𝜚1 = 𝜚 ⧵ {𝐹 ↦ 𝜚𝐹}. Then 𝜚 = 𝜚1𝜎1. Since 𝜚 unifies 𝐸′0, 𝜚1 unifies 𝐸1 = 𝜎1𝐸′0. Clearly,𝜚1 is smaller than 𝜚. Now we can apply the induction hypothesis on 𝜚1 and 𝐸1,
from which we obtain a sequence 𝐸1 ⟹𝜎2 ⋯ ⟹𝜎𝑛 𝐸𝑛 , 𝜃 which unifies 𝐸𝑛 and

4

74 Efficient Full Higher-Order Unification

𝜎′ = 𝜎𝑛…𝜎2, such that 𝜚1𝑋 = 𝜃𝜎′𝑋 for all 𝑋 ∉ 𝑉 . Finally, it is clear that the sequence𝐸0 ⟹𝜎1 𝐸1 ⟹𝜎2 ⋯ ⟹𝜎𝑛 𝐸𝑛 , 𝜃 , and 𝜎 = 𝜎′𝜎1 are as wanted in the lemma
statement.

• 𝜆𝑥. 𝑡 ?= 𝜆𝑥.𝐹 𝑥 where 𝑡 has a rigid head and 𝐹 does not occur in 𝑡 : SolutionR applies,
and the case is analogous to the previous one.

• 𝜆𝑥.𝐹 𝑠𝑚 ?= 𝜆𝑥.𝑎 𝑡 where 𝑎 is rigid: depending on the value of 𝜚, we can either
take an ImitationL or ProjectionL step. In either case, we show that the measure re-
duces. Let 𝜚𝐹 = 𝜆𝑥𝑚.𝑏 𝑢𝑛 where 𝑏 is either a constant or a bound variable. If 𝑏
is a constant, we choose the ImitationL step; otherwise we choose the ProjectionL
step. In either case, 𝜎1 = {𝐹 ↦ 𝜆𝑥𝑚.𝑏 (𝐺1 𝑥𝑚)…(𝐺𝑛 𝑥𝑚)}. Then it is easy to check
that 𝜚1 = 𝜚 ⧵ {𝐹 ↦ 𝜆𝑥𝑚.𝑏 𝑢𝑛} ∪ {𝐺1 ↦ 𝜆𝑥𝑚.𝑢1,…,𝐺𝑛 ↦ 𝜆𝑥𝑚.𝑢𝑛} unifies 𝐸1 cre-
ated as the result of imitation or projection. Clearly, 𝜚1 has smaller abstraction-
free size than 𝜚. Therefore, by the induction hypothesis we obtain the transitions𝐸1 ⟹𝜎2 ⋯ ⟹𝜎𝑛 𝐸𝑛 and substitutions 𝜃 and 𝜎′ = 𝜎𝑛…𝜎2, where 𝜚1𝑋 = 𝜃𝜎′𝑋 for
all 𝑋 ∉ 𝑉 ⧵{𝐺1,…,𝐺𝑛} and 𝜃 is a unifier of 𝐸𝑛 . Our goal is to prove 𝜚𝑋 = 𝜃𝜎′𝜎1𝑋 for
all 𝑋 ∉ 𝑉 . For variables 𝑋 ∉ 𝑉 that are not 𝐹 , we have 𝜎1𝑋 = 𝑋 and 𝜚𝑋 = 𝜚1𝑋 , which
implies 𝜚𝑋 = 𝜃𝜎′𝜎1𝑋 . For 𝑋 = 𝐹 , since 𝜚1 and 𝜃𝜎′ agree on 𝐺1,…,𝐺𝑛 , we conclude
that 𝜚𝐹 = 𝜃𝜎′𝜎1𝐹 . Therefore, by taking 𝜎 = 𝜎′𝜎1, and prepending 𝐸0 to the sequence
from the induction hypothesis, we can conclude that the preunifier is reachable.

• 𝜆𝑥.𝑎 𝑡 ?= 𝜆𝑥.𝐹 𝑠𝑚 where 𝑎 is rigid: either ImitationR or ProjectionR applies and the case
is analogous to the previous one. !

Prehofer showed that PT terminates for some classes of constraints. Those classes
impose requirements on the free variables occurring in the constraints. In particular, he
identified a class of terms we call strictly solid³, which requires that all arguments of free
variables are either bound variables (of arbitrary type) or ground second-order terms of
base type. Another important constraint is linearity: a term is called linear if it contains
no repeated occurrences of free variables.

Example 4.27. Let 𝐺, a, and 𝑥 be of base type, and 𝐹 , 𝐻 , g, and 𝑦 be binary. Then, the
term 𝐹 𝐺 a is not strictly solid, since 𝐹 is applied to a free variable 𝐺; similarly 𝐻 (𝜆𝑥.𝑥)a is
not strictly solid as the first argument is of functional type, but it is not a bound variable;𝜆𝑥.𝐹 𝑥 a is strictly solid, but 𝐹 a (g (𝜆𝑦.𝑦 aa)a) is not, as the second argument of 𝐹 is a
ground term of third order.

Prehofer’s thesis states that PT terminates on {𝑠 ?= 𝑡} if 𝑠 is linear, 𝑠 shares no free
variables with 𝑡 , 𝑠 is strictly solid, and 𝑡 is second-order. Together with completeness of
PT for preunification, this result implies that the PT procedure can be used to enumerate
finitely many elements of a complete set of preunifiers for this class of terms.

Prehofer focused on the preunification problem, remarking that the resulting flex-flex
pairs are “intricate” [133, Sect. 5.2.2]. We discovered that these flex-flex pairs actually have
an MGU, allowing us to solve the full unification problem, rather than the preunification
problem. Moreover, we lift the order restriction imposed by Prehofer: We identify a class
³In Prehofer’s thesis this class is described in the statement of Theorem 5.2.6.

4.5 A New Decidable Fragment

4

75

of terms called solid which requires that all arguments of free variables are either bound
variables (of arbitrary type) or ground (arbitrary-order) terms of base type.

Example 4.28. Consider the setting of Example 4.27. The terms 𝐹 𝐺 a and 𝐻 (𝜆𝑥.𝑥)a
are not solid, for the same reasons they are not strictly solid. However, since the order
restriction is lifted, 𝐹 a (g (𝜆𝑦.𝑦 aa)a) is solid.

Put differently, we extend the preunification decidability result for linear strictly solid
terms along two axes: We create an oracle for the full unification problem and we lift the
order restrictions. To enumerate a CSU for a problem 𝐸0 = {𝑠 ?= 𝑡}, where 𝑠 and 𝑡 are solid,𝑠 is linear and shares no free variables with 𝑡 , our oracle applies the following two steps:

1. Apply the PT procedure on 𝐸0 to obtain a preunifier 𝜎 with flex-flex constraints 𝐸𝑛 .
2. If 𝐸𝑛 is empty, return 𝜎 . Otherwise, choose a flex-flex constraint 𝑢 ?= 𝑣 from 𝐸𝑛 , and

let the MGU of 𝑢 ?= 𝑣 be 𝜚. Then, set 𝐸𝑛 ∶= 𝜚(𝐸𝑛 ⧵ {𝑢 ?= 𝑣}) and 𝜎 ∶= 𝜚𝜎 , and repeat
step 2.

To show that this oracle terminates and yields a CSU, we must prove that the PT pro-
cedure terminates on the above described class of problems (Lemma 4.31). Moreover, we
must show how to compute MGUs for the remaining flex-flex pairs (Lemma 4.32 and 4.33).
Our results are combined together in Theorem 4.34. Note that we use names Solution,
Imitation, and Projection when only one orientation of the corresponding rule is applicable.

Toward proving that the PT procedure terminates on the above described class of prob-
lems, we first consider the corresponding matching problem. A matching problem is a
unification problem {𝑠 ?= 𝑡} where 𝑡 is ground. In what follows, we establish some useful
properties of matching problems in which both 𝑠 and 𝑡 are solid (solid matching problems).
We call the unifier of a matching problem a matcher.

Lemma 4.29. PT terminates on every solid matching problem {𝑠 ?= 𝑡}.
Proof. We show termination by designing a measure on a matching problem 𝐸 that de-
creases with each application of a PT transition (possibly followed by Decomposition or
Failure steps). Our measure function compares the following properties lexicographically:

A multiset of the sizes of right-hand sides of the constraints in 𝐸
B number of free variables in 𝐸

Clearly, when applying PT transitions, the problem stays a matching problem because
the applied bindings do not introduce free variables on the right-hand sides. It is also
easy to check that each applied binding keeps the terms in the solid fragment. Namely,
bindings for both Imitation and Projection transitions are patterns, which means that, after
applying a binding, fresh free variables are applied only to bound variables or ground
base-type terms. The Solution transition effectively replaces a variable with a ground term,
which is obviously solid. We show each transition either trivially terminates or reduces
the measure:

Deletion A decreases.

4

76 Efficient Full Higher-Order Unification

Decomposition A decreases.

Failure Trivial—represents a terminal node.

Solution This transition applies on constraints of the form 𝐹 ?= 𝑡 . This reduces A, since
the constraint 𝐹 ?= 𝑡 is removed and 𝐹 cannot appear on the right-hand side.

Imitation The rule is applicable only on 𝜆𝑥.𝐹 𝑠𝑚 ?= 𝜆𝑥. f 𝑡𝑛 . The Imitation transition re-
places the constraint with {𝐻𝑖 𝑠𝑚 ?= 𝑡𝑖 ∣ 1 ≤ 𝑖 ≤ 𝑛}. This reduces A, as 𝐹 does not
appear on any right-hand side.

Projection The rule is applicable only on 𝜆𝑥.𝐹 𝑠𝑚 ?= 𝜆𝑥.𝑎 𝑡𝑛 . If 𝑎 is a bound variable,
and we project 𝐹 to argument 𝑠𝑖 different from 𝑎, Failure applies and PT trivially
terminates. If we project 𝐹 to 𝑎, we apply Decomposition, which reduces 𝐴. If 𝑎 is a
constant, for Failure not to apply, we have to project to a base-type ground term 𝑠𝑖 .
This does not increase A, since no variables appear on right-hand sides, but removes
the variable 𝐹 from 𝐸, reducing B by one. !

Recall that we say 𝜎 is a grounding substitution if for every variable 𝐹 mapped by 𝜎 ,𝜎𝐹 is ground (Sect. 2.2).
Lemma 4.30. All unifiers produced by PT for the solid matching problem {𝑠 ?= 𝑡} are ground-
ing substitutions.

Proof. Closely following the proof of Lemma 5.2.5 in Prehofer’s PhD thesis [133], we prove
our claim by induction on the length of the PT transition sequence that leads to the unifier.
We know this sequence is finite by Lemma 4.29. The base case of induction, for the empty
sequence, is trivial. The induction step is made using one of the following transitions:
Deletion Trivial.

Decomposition Trivial.

Failure This rule is not relevant, since it will not lead to the unifier.

Solution This rule applies the substitution {𝐹 ↦ 𝑡}, which is grounding since 𝑡 is ground.
Imitation This transition applies on constraints of the form𝜆𝑥.𝐹 𝑠𝑘 ?= 𝜆𝑥. f 𝑡𝑙

Thebinding for Imitation is 𝜚 = {𝐹 ↦𝜆𝑥𝑘. f (𝐺1 𝑠𝑘)…(𝐺𝑙 𝑠𝑘)}, and reduces the problem
to {𝐺𝑖 𝑠𝑘 ?= 𝑡𝑖 ∣ 1 ≤ 𝑖 ≤ 𝑙}. Since the right-hand sides are ground, any unifier 𝜎 produced
by PT must map all of the variables 𝐺1,…,𝐺𝑙 . By the induction hypothesis, 𝜎𝐺𝑖 is
ground. Therefore, 𝜎𝜚 must map 𝐹 to a ground term.

Projection This transition applies on constraints of the form𝜆𝑥.𝐹 𝑠𝑘 ?= 𝜆𝑥. 𝑡
Thebinding for Projection is 𝜚 = {𝐹 ↦𝜆𝑥𝑘.𝑥𝑖 (𝐺1 𝑥𝑘)…(𝐺𝑗 𝑥𝑘)}, and reduces the prob-
lem to {𝑠𝑖 (𝐺1 𝑠𝑘)…(𝐺𝑗 𝑠𝑘) ?= 𝑎 𝑡𝑙 }. Since the right-hand side is ground, any unifier 𝜎
produced by PTmust map all of the variables𝐺1,…,𝐺𝑗 . By the induction hypothesis,𝜎𝐺𝑖 is ground. Therefore, 𝜎𝜚 must map 𝐹 to a ground term. !

4.5 A New Decidable Fragment

4

77

Lemma 4.31. If 𝑠 and 𝑡 are solid, and 𝑠 is linear and shares no free variables with 𝑡 , then PT
terminates for the preunification problem {𝑠 ?= 𝑡}, and all remaining flex-flex constraints are
solid.

Proof. This lemma is amodification of Lemma 5.2.1 andTheorem 5.2.6 fromPrehofer’s PhD
thesis [133]. Correspondingly, the following proof closely follows the proofs for these two
lemmas. We also adopt the notion of an isolated variable from Prehofer’s thesis: a variable
is isolated in a multiset 𝐸 of constraints if it appears exactly once in 𝐸.

First, similar to the proof of previous lemmawe conclude each transitionmaintains the
condition that the terms remain solid. Second, we have to show that variables on left-hand
sides remain isolated. For ImitationL(R) and ProjectionL(R) rules, the preservation of this in-
variant is obvious. Later, we also show that SolutionL(R) preserves it. Third, since 𝑠 and𝑡 share no variables, and 𝑠 is linear, no rule can introduce a variable from the right-hand
side to the left-hand side.

To prove termination of PT, we devise a measure that decreases with each application
of a PT transition. The measure lexicographically compares the following properties:

A number of occurrences of constant symbols and bound variables on left-hand sides that
are not below free variables

B number of free variables on right-hand sides

C multiset of the sizes of right-hand sides

We show that each transition either trivially terminates or reduces the measure:

Deletion A does not increase and at least one of A or B reduces.

Decomposition A reduces.

Failure Trivial.

SolutionL 𝐹 ?= 𝑡 : since 𝐹 is isolated, A is unchanged, B is not increased, and C reduces.
All variables on left-hand sides remain isolated since they are unaffected by this
substitution.

SolutionR 𝑡 ?= 𝐹 : since 𝐹 does not occur on any left-hand side and the head of 𝑡 must
be a constant or bound variable (otherwise the rule would not be applicable), A re-
duces. Even though 𝑡 might contain some free variables and 𝐹 can have multiple
occurrences on right-hand sides, all free variables on left-hand sides remain isolated.
Namely, all free variables in 𝑡 occur exactly once in the multiset, and since 𝑡 ?= 𝐹 is
removed, all of them either disappear or end up on right-hand sides. We distinguish
the following two forms of the selected constraint:

ImitationL 𝜆𝑥.𝐹 𝑣𝑛 ?= 𝜆𝑥. f𝑢𝑚: We replace this constraint by {𝐻𝑖 𝑣𝑛 ?= 𝑢𝑖 ∣ 1 ≤ 𝑖 ≤ 𝑚} and
apply the ImitationL binding 𝐹 ↦ 𝜆𝑥𝑛. f (𝐻1 𝑥𝑛)…(𝐻𝑚 𝑥𝑛). As 𝐹 is isolated, A and B
do not increase. Since 𝐹 is isolated, it does not occur on any right-hand side, and
hence C decreases.

4

78 Efficient Full Higher-Order Unification

ImitationR 𝜆𝑥. f𝑢𝑚 ?= 𝜆𝑥.𝐹 𝑣𝑛: applying the ImitationR transition as above will reduce A
since 𝐹 cannot appear on any left-hand side.

ProjectionL 𝜆𝑥.𝐹 𝑣𝑛 ?= 𝜆𝑥.𝑎𝑢𝑚: if 𝑎 is a bound variable, then for Failure not to be appli-
cable afterward, we have to project 𝐹 onto argument 𝑣𝑖 equal to 𝑎. Then we proceed
like for ImitationL. If 𝑎 is not a bound variable, then we have to project to some base-
type term 𝑣𝑗 (otherwise Failure would be applicable afterward). This reduces the
problem to 𝜆𝑥.𝑣𝑗 ?= 𝜆𝑥.𝑎𝑢𝑚 . This is a solid matching problem, whose solutions com-
puted by PT are grounding substitutions (see Lemma 4.30). Applying one of those
solutions will eliminate all the free variables in 𝜆𝑥.𝑎𝑢𝑚 . Since PT is parameterized
by an admissible selection function, we know that there are no constraints descend-
ing from a simple projection in 𝐸 since the constraint 𝜆𝑥.𝐹 𝑣𝑛 ?= 𝜆𝑥.𝑎𝑢𝑚 was chosen,
which, due to solidity restrictions, cannot be such a descendant. Therefore, we know
that PT will transform the descendants of the matching problem 𝜆𝑥.𝑣𝑗 ?= 𝜆𝑥.𝑎𝑢𝑚
until either Failure is observed (making PT trivially terminating) or no descendant
exists and the grounding matcher is computed (see Lemmas 4.30 and 4.29). This
results in removal of the original constraint 𝜆𝑥.𝐹 𝑣𝑛 ?= 𝜆𝑥.𝑎𝑢𝑚 and application of
the computed grounding matcher, which will either remove all the free variables in
the right-hand side of the constraint, not increasing A and reducing B, or, if no free
variables occur in the right-hand side, reduce C while not increasing A and B.

ProjectionR 𝜆𝑥.𝑎 𝑣𝑛 ?= 𝜆𝑥.𝐹 𝑢𝑚: if 𝑎 is a bound variable, projecting 𝐹 onto argument 𝑢𝑖
will either enable application of Decomposition as the next step, reducing A, or it
will result in Failure, trivially terminating. If 𝑎 is a constant, then projecting 𝐹 onto
some 𝑢𝑗 will either yield Failure or enable Decomposition, reducing A. !

Enumerating a CSU for a solid flex-flex pair may seem as hard as for any other flex-flex
pair; however, the following two lemmas show that solid pairs admit an MGU:

Lemma 4.32. The unification problem {𝜆𝑧.𝐹 𝑠𝑚 ?= 𝜆𝑧.𝐹 𝑠′𝑚}, where both terms are solid, has
an MGU of the form 𝜎 = {𝐹 ↦ 𝜆𝑥𝑚.𝐺 𝑥𝑗1 …𝑥𝑗𝑟 } where 𝐺 is an auxiliary variable, and 1 ≤𝑗1 < ⋯ < 𝑗𝑟 ≤ 𝑚 are exactly those indices 𝑗𝑖 for which 𝑠𝑗𝑖 = 𝑠′𝑗𝑖 .
Proof. Let 𝜚 be a unifier for the given unification problem. Let 𝜆𝑥.𝑢 = 𝜚𝐹 . Take an arbitrary
subterm of 𝑢 whose head is a bound variable 𝑥𝑖 . If 𝑥𝑖 is of function type, it corresponds to
either 𝑠𝑖 or 𝑠′𝑖 which, due to solidity restrictions, has to be a bound variable. Furthermore,
since 𝜚 is a unifier, 𝑠𝑖 and 𝑠′𝑖 have to be the syntactically equal. Similarly, if 𝑥𝑖 is of base
type, it corresponds to two ground terms 𝑠𝑖 and 𝑠′𝑖 which have to be syntactically equal.
We conclude that 𝜚 can use variables from 𝑥𝑛 only if they correspond to syntactically equal
terms. Therefore, there is a substitution 𝜃 such that 𝜚𝑋 = 𝜃𝜎𝑋 for all 𝑋 ≠ 𝐺. Due to the
arbitrary choice of 𝜚, we conclude that 𝜎 is an MGU. !

Lemma 4.33. Let {𝜆𝑥.𝐹 𝑠𝑚 ?= 𝜆𝑥.𝐹 ′ 𝑠′𝑚′} be a solid unification problem where 𝐹 ≠ 𝐹′. By
Lemma 4.29, there exists a finite CSU {𝜎1𝑖 ,… ,𝜎𝑘𝑖𝑖 } of the problem {𝑠𝑖 ?= 𝐻𝑖 𝑠′𝑚′}, where 𝐻𝑖 is
a fresh free variable. Let 𝜆𝑦𝑚′ . 𝑠𝑗𝑖 = 𝜆𝑦𝑚′ .𝜎𝑗𝑖 (𝐻𝑖)𝑦𝑚′ . Similarly, also by Lemma 4.29, there
exists a finite CSU {�̃�1𝑖 ,… , �̃� 𝑙𝑖𝑖 } of the problem {𝑠′𝑖 ?= �̃�𝑖 𝑠𝑚}, where �̃�𝑖 is a fresh free variable. Let𝜆𝑥𝑚.𝑠′𝑗𝑖 = 𝜆𝑥𝑚. �̃� 𝑗𝑖 (�̃�𝑖)𝑥𝑚 . Let 𝑍 be a fresh free variable. An MGU 𝜎 for the given problem is

4.5 A New Decidable Fragment

4

79

𝐹 ↦ 𝜆𝑥𝑚.𝑍 𝑥1 … 𝑥1⏟⏟⏟⏟⏟⏟⏟⏟⏟𝑘1 times

… 𝑥𝑚 … 𝑥𝑚⏟⏟⏟⏟⏟⏟⏟⏟⏟𝑘𝑚 times

𝑠′11…𝑠′𝑙11 … 𝑠′1𝑚′ …𝑠′𝑙𝑚′𝑚′
𝐹 ′ ↦ 𝜆𝑦𝑚′ .𝑍 𝑠11 …𝑠𝑘11 …𝑠1𝑚…𝑠𝑘𝑚𝑚 𝑦1 …𝑦1⏟⏟⏟⏟⏟⏟⏟⏟⏟𝑙1 times

… 𝑦𝑚′ …𝑦𝑚′⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟𝑙𝑚′ times

where the auxiliary variables are 𝐻1,…,𝐻𝑚 , �̃�1,…�̃�𝑚′ , 𝑍 and all auxiliary variables associ-
ated with the above CSUs.

Proof. Let 𝜚 be an arbitrary unifier for the problem 𝜆𝑥.𝐹 𝑠𝑚 ?= 𝜆𝑥.𝐹 ′ 𝑠′𝑚′ . We prove 𝜎 is an
MGU by showing that there exists a substitution 𝜃 such that 𝜚𝑋 = 𝜃𝜎𝑋 for all nonauxiliary
variables 𝑋 . We can focus only on 𝑋 ∈ {𝐹 ,𝐹 ′} because all other nonauxiliary variables
appear neither in the original problem nor in 𝜎𝐹 or 𝜎𝐹′; so we can simply define 𝜃𝑋 = 𝜚𝑋 .

Let 𝜆𝑥𝑚.𝑢 = 𝜚𝐹 and 𝜆𝑦𝑚′ .𝑢′ = 𝜚𝐹 ′, where the bound variables 𝑥𝑚 and 𝑦𝑚′ have been𝛼-renamed apart. We also assume that the names of variables bound inside 𝑢 and 𝑢′ are𝛼-renamed so that they are different from 𝑥𝑚 and 𝑦𝑚′ . Finally, bound variables from
the definition of 𝜎 have been 𝛼-renamed to match 𝑥𝑚 and 𝑦𝑚′ . We define 𝜃 to be the
substitution 𝜃 = {𝑍 ↦ 𝜆𝑧11 …𝑧𝑘11 …𝑧1𝑚…𝑧𝑘𝑚𝑚 𝑤11 …𝑤𝑙11 …𝑤1𝑚′ …𝑤𝑙𝑚′𝑚′ .diff(𝑢,𝑢′)}
where diff(𝑣,𝑣′) is defined recursively as

diff(𝜆𝑥.𝑣,𝜆𝑦.𝑣′) = 𝜆𝑥.diff(𝑣, {𝑦 ↦ 𝑥}𝑣′) (4.1)
diff(𝑎 𝑣𝑛,𝑎 𝑣′𝑛) = 𝑎diff(𝑣1,𝑣′1)…diff(𝑣𝑛,𝑣′𝑛) (4.2)
diff(𝑥𝑖 ,𝑣′) = 𝑧𝑘𝑖 , if 𝑣′ = 𝑠𝑘𝑖 (4.3)

diff(𝑣,𝑦𝑖) = 𝑤𝑙𝑖 , if 𝑣 = 𝑠′𝑙𝑖 (4.4)
diff(𝑥𝑖 𝑣𝑛,𝑦𝑗 𝑣′𝑛) = 𝑧𝑘𝑖 diff(𝑣1,𝑣′1)…diff(𝑣𝑛,𝑣′𝑛), if 𝑦𝑗 = 𝑠𝑘𝑖 (4.5)

From diff’s definition it is clear that there are terms 𝑣,𝑣′ for which it is undefined.
However, we will show that for each 𝑢 and 𝑢′ that are bodies of bindings from a unifier𝜚, diff is defined and has the desired property. In equations (4.3), (4.4), and (4.5), if there
are multiple numbers 𝑘 or 𝑙 that fulfill the condition, choose an arbitrary one. We need to
show that 𝜚𝐹 = 𝜃𝜎𝐹 and 𝜚𝐹 ′ = 𝜃𝜎𝐹′. By the definitions of 𝑢, 𝑢′, 𝜃 and 𝜎 and 𝛽-reduction,
this is equivalent to𝜆𝑥𝑚.𝑢 = 𝜆𝑥𝑚. {𝑧𝑘𝑖 ↦ 𝑥𝑖,𝑤𝑙𝑖 ↦ 𝑠′𝑙𝑖 for all 𝑘, 𝑙, 𝑖}diff(𝑢,𝑢′)𝜆𝑦𝑚′ .𝑢′ = 𝜆𝑦𝑚′ . {𝑧𝑘𝑖 ↦ 𝑠𝑘𝑖 ,𝑤𝑙𝑖 ↦ 𝑦𝑖 for all 𝑘, 𝑙, 𝑖}diff(𝑢,𝑢′)
We will show by induction that for any 𝜆𝑥𝑚.𝑣 , 𝜆𝑦𝑚.𝑣′ such that{𝑥1 ↦ 𝑠1,…,𝑥𝑚 ↦ 𝑠𝑚}𝑣 = {𝑦1 ↦ 𝑠′1,…,𝑦𝑚′ ↦ 𝑠′𝑚′}𝑣′ (⋆)
we have 𝑣 = {𝑧𝑘𝑖 ↦ 𝑥𝑖,𝑤𝑙𝑖 ↦ 𝑠′𝑙𝑖 for all 𝑘, 𝑙, 𝑖}diff(𝑣,𝑣′)𝑣′ = {𝑧𝑘𝑖 ↦ 𝑠𝑘𝑖 ,𝑤𝑙𝑖 ↦ 𝑦𝑖 for all 𝑘, 𝑙, 𝑖}diff(𝑣,𝑣′) (†)

4

80 Efficient Full Higher-Order Unification

The equation (⋆) holds for 𝑣 = 𝑢 and 𝑣′ = 𝑢′ because 𝜚 is a unifier of 𝜆𝑥.𝐹 𝑠𝑚 ?= 𝜆𝑥.𝐹 ′ 𝑠′𝑚′ .
Therefore, once we have shown that (⋆) implies (†), we know that (†) holds for 𝑣 = 𝑢 and𝑣′ = 𝑢′ and we are done.

We prove that (⋆) implies (†) by induction on the sizes of 𝑣 and 𝑣′. We consider the
following cases:𝑣 = 𝜆𝑥.𝑣1 For (⋆) to hold, 𝑣 and 𝑣′ must be of the same type. Therefore, the 𝜆-prefixes of

their 𝜂-long representatives must have the same length and we can apply equation4.1. By the induction hypothesis, (†) holds.𝑣 = 𝑥𝑖 In this case, {𝑥1 ↦ 𝑠1,…,𝑥𝑚 ↦ 𝑠𝑚}𝑣 = 𝑠𝑖 . Since (⋆) holds, 𝑣′ must be an instance
of a unifier from the CSU of 𝑠𝑖 = 𝐻𝑖 𝑠′𝑚′ . However, since 𝑠𝑖 and all terms in 𝑠′𝑚′ are
ground, 𝜆𝑦𝑚.𝑣′ = 𝜎𝑘𝑖 (𝐻𝑖), for some 𝑘. Then, diff(𝑥𝑖 ,𝑣′) = 𝑧𝑘𝑖 , and it is easy to check
that (†) holds.𝑣 = 𝑥𝑖 𝑣𝑛,𝑛 > 0 In this case, 𝑥𝑖 is mapped to 𝑠𝑖 which, due to solidity restrictions, has to be
a functional bound variable. Since (⋆) holds, we conclude that the head of {𝑦1 ↦𝑠′1,…,𝑦𝑚′ ↦ 𝑠′𝑚′}𝑣′ must be 𝑠′𝑗 , such that 𝑠′𝑗 = 𝑠𝑖 ; this also means that 𝑣′ = 𝑦𝑗 𝑣′𝑛 .
Therefore, it is easy to check that some 𝜏 = {𝐻𝑖 ↦ 𝜆𝑦𝑚′ .𝑦𝑗} is a matcher for the
problem 𝑠𝑖 = 𝐻𝑖 𝑠′𝑚′ . For some 𝑘, 𝜎𝑘𝑖 = 𝜏 , i.e., diff(𝑣,𝑣′) = 𝑧𝑘𝑖 diff(𝑣1,𝑣′1)…diff(𝑣𝑛,𝑣′𝑛).
By the induction hypothesis, we get that (†) holds.𝑣 = 𝑎𝑣𝑛 In the remaining cases 𝑎 is either a free variable, a loose bound variable differ-
ent from 𝑥1,…,𝑥𝑚 , or a constant. If 𝑎 is a free variable or a loose bound variable
different from 𝑥1,…,𝑥𝑚 , then 𝑣′ = 𝑎𝑣′𝑛 , since (⋆) holds, all of 𝑠′𝑚′ are ground, and
bound variables different from 𝑥1,…,𝑥𝑚 and 𝑦1,…,𝑦𝑚′ are renamed to match by
equation 4.1. By the induction hypothesis and by equation 4.2, we obtain (†). If 𝑎
is a constant, we consider two cases: either 𝑣′ = 𝑎𝑣′𝑛 , which allows us to apply the
induction hypothesis and obtain (†) as above, or 𝑣′ = 𝑦𝑗 𝑣′𝑚 . Since 𝑎 is a constant,𝑦𝑗 cannot be a functional bound variable, since then it would be mapped to 𝑠′𝑗 , which
due to solidity restrictions also has to be a functional bound variable and (⋆) would
not hold. Therefore 𝑣′ = 𝑦𝑗 . In this case, we proceed as in the case 𝑣 = 𝑥𝑖 with the
roles of 𝑣 and 𝑣′ swapped. !

Theorem 4.34. Let 𝑠 and 𝑡 be solid terms that share no free variables, and let 𝑠 be linear.
Then the unification problem {𝑠 ?= 𝑡} has a finite CSU.

Proof. By Lemma 4.31, PT terminates on {𝑠 ?= 𝑡} with a finite set of preunifiers 𝜎 , each
associated with a multiset 𝐸 of solid flex-flex pairs.

An MGU 𝛿𝐸 of the remaining multiset 𝐸 of solid flex-flex constraints can be found as
follows. Choose one constraint (𝑢 ?= 𝑣) ∈ 𝐸 and determine an MGU 𝜚 for it using Lemma
4.32 or 4.33. Then the set 𝜚(𝐸 ⧵ {𝑢 ?= 𝑣}) also contains only solid flex-flex constraints, and
we iterate this process by choosing a constraint from 𝜚(𝐸 ⧵ {𝑢 ?= 𝑣}) next until there are no
constraints left, eventually yielding an MGU 𝜚′ of 𝜚(𝐸 ⧵ {𝑢 ?= 𝑣}). Finally, we obtain the
MGU 𝛿𝐸 = 𝜚′𝜚 of 𝐸.

Let 𝑈 = {𝛿𝐸𝜎 ∣ PT produces preunifier 𝜎 with constraints 𝐸}. By termination of PT, 𝑈
is finite. We show that 𝑈 is a CSU. Let 𝜚 be an arbitrary unifier for {𝑠 ?= 𝑡}. By Lemma 4.26,

4.6 An Extension of Fingerprint Indexing

4

81

PT produces a preunifier 𝜎 with flex-flex constraints 𝐸 such that there is a unifier 𝜃 of 𝐸
and 𝜚𝑋 = 𝜃𝜎𝑋 for all 𝑋 not contained in the supply of fresh variables 𝑉 . Since 𝛿𝐸 is an
MGU of 𝐸, assuming that we use variables from 𝑉 in the role of the auxiliary variables,
there exists a substitution 𝜃′ such that 𝜃𝑋 = 𝜃′𝛿𝐸𝑋 for all 𝑋 ∉ 𝑉 . If we make sure that we
never reuse fresh variables and that the supply 𝑉 does not contain any variables from the
initial problem, it follows that 𝜚𝑋 = 𝜃′𝛿𝐸𝜎𝑋 for all 𝑋 ∉ 𝑉 . Therefore, 𝑈 is a CSU. !

The proof of Theorem 4.34 provides an effective way to calculate a CSU using PT and
the results of Lemmas 4.32 and 4.33.

Example 4.35. Let {𝐹 (fa) ?= ga (𝐺 a)} be the unification problem to solve. Projecting 𝐹
onto the first argument will lead to a nonunifiable problem, so the imitation of g is per-
formed, yielding a binding 𝜎1 = {𝐹 ↦ 𝜆𝑥.g (𝐹1 𝑥)(𝐹2 𝑥)}. After decomposition, this yields
the problem {𝐹1 (fa) ?= a, 𝐹2 (fa) ?= 𝐺 a}. Again, a can only be imitated for 𝐹1—building a
new binding 𝜎2 = {𝐹1 ↦ 𝜆𝑥.a}. Finally, this yields the problem {𝐹2 (fa) ?= 𝐺 a}. Accord-
ing to Lemma 4.33, CSUs for the problems 𝐽1 a = fa and 𝐼1 (fa) ?= a are found using PT.
The latter problem has a singleton CSU {𝐼1 ↦ 𝜆𝑥.a}, whereas the former has a CSU con-
taining {𝐽1 ↦ 𝜆𝑥. f𝑥} and {𝐽1 ↦ 𝜆𝑥. fa}. Combining these solutions, an MGU 𝜎3 = {𝐹2 ↦𝜆𝑥.𝐻 𝑥 𝑥 a, 𝐺 ↦ 𝜆𝑥.𝐻 (fa) (f𝑥)𝑥} is obtained for 𝐹2 (fa) ?= 𝐺 a. Finally, the MGU of the
original problem is computed: 𝜎 = 𝜎3𝜎2𝜎1 = {𝐹 ↦ 𝜆𝑥.ga (𝐻 𝑥 𝑥 a),𝐺 ↦ 𝜆𝑥.𝐻 (fa) (f𝑥)𝑥}.
For brevity, we omitted the intermediate bindings of auxiliary variables in 𝜎 .

The solid fragment is useful for automatic theorem provers based on 𝜆-superposi-
tion [18]. As Example 4.35 shows, when the solid oracle is used, superposing from 𝐹 (fa)
into ga (𝐺 a) yields a single clause; without it, our procedure does not terminate.

Small examples that violate conditions of Theorem 4.34 and admit only infinite CSUs
can easily be found. The problem {𝜆𝑥.𝐹 (f𝑥) ?= 𝜆𝑥. f (𝐹 𝑥)} violates variable distinctness and
is a well-known example of a problem with only infinite CSUs. Similarly, 𝜆𝑥.g (𝐹 (f𝑥))𝐹 ?=𝜆𝑥.g (f (𝐺 𝑥))𝐺, which violates linearity, reduces to the previous problem. Only ground
arguments to free variables are allowed because {𝐹 𝑋 ?= 𝐺 a} has only infinite CSUs. Finally,
it is crucial that functional arguments to free variables are only bound variables: The
problem {𝜆𝑦.𝑋(𝜆𝑥.𝑥)𝑦 ?= 𝜆𝑦.𝑦} has only infinite CSUs.

4.6 An Extension of Fingerprint Indexing
A fundamental building block for almost all automated reasoning tools is the operation of
retrieving term pairs that satisfy certain conditions, e.g., unifiable terms, instances or gen-
eralizations. Indexing data structures are used to implement this operation efficiently. If
the data structure retrieves precisely the terms that satisfy the condition, it is called perfect.

Higher-order indexing has received little attention compared to its first-order counter-
part. However, recent research in higher-order theorem proving increased the interest in
higher-order indexing [24, 106]. Recall from Chapter 3 that a fingerprint index [144] is an
imperfect index based on the idea that the skeleton of the term consisting of all nonvari-
able positions is not affected by substitutions. Therefore, we can easily determine that the
terms are not unifiable (or matchable) if they disagree on a fixed set of sample positions.

4

82 Efficient Full Higher-Order Unification

More formally, when we sample an untyped first-order term 𝑡 on a sample position 𝑝,
the generic fingerprinting function gfpf distinguishes four possibilities:

gfpf(𝑡,𝑝) = ⎧⎪⎨⎪⎩
f if 𝑡|𝑝 has a symbol head f
A if 𝑡|𝑝 is a variable
B if 𝑡|𝑞 is a variable for some proper prefix 𝑞 of 𝑝
N otherwise

We define the fingerprinting function fp(𝑡) = (gfpf(𝑡,𝑝1),…,gfpf(𝑡,𝑝𝑛)), based on a fixed
tuple of positions 𝑝𝑛 . Determining whether two terms are compatible for a given retrieval
operation reduces to checking their fingerprints’ componentwise compatibility. The fol-
lowing matrices determine the compatibility for retrieval operations:

f1 f2 A B N
f1 ! !

f2 ! !
A !
B
N ! ! !

f1 f2 A B N
f1 ! ! ! !

f2 ! ! ! !
A ! !
B
N ! ! ! !

The left matrix determines unification compatibility, while the right matrix determines
compatibility formatching term 𝑠 (rows) onto term 𝑡 (columns). Symbols f1 and f2 stand for
arbitrary distinct constants. Incompatible features are marked with !. For example, given
a tuple of term positions (1,1.1.1,2), and terms f(g(𝑋),b) and f(f(a,a),b), their fingerprints
are (g,B,b) and (f,N,b), respectively. Since the first fingerprint component is incompatible,
terms are not unifiable.

Fingerprints for the terms in the index are stored in a trie data structure. This allows us
to efficiently filter out terms that are not compatible with a given retrieval condition. For
the remaining terms, a unification or matching procedure must be invoked to determine
whether they satisfy the condition or not.

The fundamental idea of first-order fingerprint indexing carries over to higher-order
terms—application of a substitution does not change the rigid skeleton of a term. However,
to extend fingerprint indexing to higher-order terms, we must address the issues of 𝛼𝛽𝜂-
normalization and figure out how to cope with 𝜆-abstractions and bound variables. To
that end, we define a function ⌊𝑡⌋, defined on 𝜂-long 𝛽-reduced terms in De Bruijn [42]
notation:⌊𝐹 𝑠⌋ = 𝐹 ⌊i 𝑠𝑛⌋ = db𝛼𝑖 (⌊𝑠1⌋,… , ⌊𝑠𝑛⌋) ⌊f 𝑠𝑛⌋ = f(⌊𝑠1⌋,… , ⌊𝑠𝑛⌋) ⌊𝜆𝑥. 𝑠⌋ = ⌊𝑠⌋
We let i be a bound variable of type 𝛼 with De Bruijn index 𝑖, and db𝛼𝑖 be a fresh constant
corresponding to this variable. All constants db𝛼𝑖 must be fresh. Effectively, ⌊ ⌋ transforms
an 𝜂-long 𝛽-reduced higher-order term to an untyped first-order term. Let 𝑡 ↓𝛽𝜂 be the 𝜂-
long 𝛽-reduced form of 𝑡 ; the higher-order generic fingerprinting function gfpfho, which
relies on conversion ⟨𝑡⟩db from named to De Bruijn representation, is defined as

gfpfho(𝑡,𝑝) = gfpf(⌊⟨𝑡 ↓𝛽𝜂⟩db⌋,𝑝)

4.7 Implementation

4

83

If we define fpho(𝑡) = fp(⌊⟨𝑡 ↓𝛽𝜂⟩db⌋), we can support fingerprint indexing for higher-
order terms with no changes to the compatibility matrices. For example, consider the
terms 𝑠 = (𝜆𝑥𝑦.𝑥 𝑦)g and 𝑡 = f, where g has the type 𝛼 → 𝛽 and f has the type 𝛼 →𝛼 →𝛽 .
For the tuple of positions (1,1.1.1,2) we get

fpho(𝑠) = fp(⌊⟨𝑠 ↓𝛽𝜂⟩db⌋) = fp(g(db𝛼0)) = (db𝛼0 ,N,N)
fpho(𝑡) = fp(⌊⟨𝑡 ↓𝛽𝜂⟩db⌋) = fp(f(db𝛼1 ,db𝛼0)) = (db𝛼1 ,N,db𝛼0)

As the first and third fingerprint component are incompatible, the terms are not unifiable.
Other first-order indexing techniques such as feature vector indexing and substitution

trees can probably be extended to higher-order terms using the method described here.

4.7 Implementation
As described in Sect. 2.5.7, Zipperposition [48, 49] is an open-source⁴ theorem prover writ-
ten in OCaml. It is a versatile testbed for prototyping extensions to superposition-based
theorem provers. It was initially designed as a prover for rank-1 polymorphic [31] first-
order logic and then extended to higher-order logic. A recent addition is a complete mode
for Boolean-free higher-order logic [18], which depends on a unification procedure that
can enumerate a CSU. We implemented our procedure in Zipperposition.

We used OCaml’s functors to create a modular implementation. The core of our proce-
dure is implemented in a module that is parameterized by another module providing ora-
cles and implementing the Bind step. In this way we obtain the complete or pragmatic pro-
cedure and seamlessly integrate oracles while reusing as much common code as possible.

To enumerate all elements of a possibly infinite CSU, we rely on lazy lists whose ele-
ments are subsingletons of unifiers (either one-element sets containing a unifier or empty
sets). The search space must be explored in a fair manner, meaning that no branch of the
constructed tree is indefinitely postponed.

Each Bind step will give rise to new unification problems 𝐸1,𝐸2,… to be solved. Solu-
tions to each of those problems are lazy lists 𝑝1,𝑝2,… containing subsingletons of unifiers.
To avoid postponing some unifier indefinitely, we use the dovetailing technique: we first
take one subsingleton from 𝑝1, then one from each of 𝑝1 and 𝑝2. We continue with one
subsingleton from each of 𝑝1,𝑝2, and 𝑝3, and so on. Empty lazy lists are ignored in the
traversal. To ensure we do not remain stuck waiting for a unifier from a particular lazy
list, the procedure periodically returns an empty set, indicating that the next lazy list
should be probed.

The implemented selection function for our procedure prioritizes selection of rigid-
rigid over flex-rigid pairs, and flex-rigid over flex-flex pairs. However, since the con-
structed substitution 𝜎 is not applied eagerly, heads can appear to be flex, even if they
become rigid after dereferencing and normalization. Tomitigate this issue, we dereference
the heads with 𝜎 , but do not normalize, and use the resulting heads for prioritization.

We implemented oracles for the pattern, solid, and fixpoint fragment. Fixpoint unifi-
cation [82] is concerned with problems of the form {𝐹 ?= 𝑡}. If 𝐹 does not occur in 𝑡 , {𝐹 ↦ 𝑡}
is an MGU for the problem. If there is a position 𝑝 in 𝑡 such that 𝑡|𝑝 = 𝐹 𝑢𝑚 and for each

⁴https://github.com/sneeuwballen/zipperposition

https://github.com/sneeuwballen/zipperposition

4

84 Efficient Full Higher-Order Unification

prefix 𝑞 ≠ 𝑝 of 𝑝, 𝑡|𝑞 has a rigid head and either 𝑚 = 0 or 𝑡 is not a 𝜆-abstraction, then we
can conclude that 𝐹 ?= 𝑡 has no solutions. Otherwise, the fixpoint oracle is not applicable.

For second-order logic with only unary constants, it is decidable whether a unifier for a
problem in this class (calledmonadic second-order) exists [61]. As this class of terms admits
a possibly infinite CSU, this oracle cannot be used for OracleSucc, but it can be used for
OracleFail. Similarly the fragment of second-order terms with no repeated occurrences of
free variables has decidable unifier existence but possibly infinite CSUs [57]. Due to their
limited applicability and high complexity we decided not to implement these oracles.

4.8 Evaluation
We evaluated the implementation of our unification procedure in Zipperposition, assess-
ing the complete variant and the pragmatic variant, the latter with several different com-
binations of limits for number of bindings. As part of the implementation of the complete
mode for Boolean-free higher-order logic in Zipperposition [18], Bentkamp implemented a
straightforward version of the JP procedure. This version is faithful to the original descrip-
tion, with a check as to whether a (sub)problem can be solved using a first-order oracle as
the only optimization. Our evaluations were performed on StarExec Miami [154] servers
with Intel Xeon E5-2620 v4 CPUs clocked at 2.10GHz with 60 s CPU limit.

Contrary to first-order unification, there is nowidely available benchmark set designed
solely for evaluating performance of higher-order unification algorithms. Thus, we used
all 2606 monomorphic higher-order theorems from the TPTP 7.2.0 library [157] and 832
monomorphic higher-order Sledgehammer (SH) generated problems [156] as our bench-
marks.⁵ Many TPTP problems require synthesis of complicated unifiers, whereas SH prob-
lems are only mildly higher-order—many of them are solved with first-order unifiers.

We used the naive implementation of the JP procedure (jp) as a baseline to evaluate the
performance of our procedure. We compare it with the complete variant of our procedure
(cv) and pragmatic variants (pv) with several different configurations of limits for applied
bindings. All other Zipperposition parameters have been fixed to the values of a variant of
a well-performing configuration we used for the 2019 installment of THF division of the
CASC theorem proving competition [160]. The cv configuration and all of the pv config-
urations use only pattern unification as an underlying oracle. To test the effect of oracle
choice, we evaluated the complete variant in eight combinations: with no oracles (n), with
only fixpoint (f), pattern (p), or solid (s) oracle, andwith their combinations: fp, fs, ps, fps.

Figure 4.1 compares different variants of the procedure with the naive JP implementa-
tion. Each pv configuration is denoted by pv𝑎𝑏𝑐𝑑𝑒 where 𝑎 is the limit on the total number
of applied bindings, and 𝑏, 𝑐, 𝑑 , and 𝑒 are the limits of functional projections, eliminations,
imitations, and identifications, respectively. The values for 𝑎,𝑏, 𝑐,𝑑, and 𝑒 are chosen fol-
lowing the intuition that functional projection and identification are the most explosive
bindings. Figure 4.2 summarizes the effects of using different oracles.

The configuration of our procedure with no oracles outperforms the JP procedure with
the first-order oracle. This suggests that the design of the procedure, in particular lazy
normalization and lazy application of the substitution, already reduces the effects of the

⁵An archive with raw results, all used problems, and scripts for running each configuration is available at http:
//doi.org/10.5281/zenodo.4269591

http://doi.org/10.5281/zenodo.4269591
http://doi.org/10.5281/zenodo.4269591

4.8 Evaluation

4

85

jp cv pv126666 pv63333 pv42222 pv21222 pv21121 pv21020
TPTP 1551 1717 1722 1732 1732 1715 1712 1719
SH 242 260 253 255 255 254 259 257

Figure 4.1: Proved problems, per configuration

n f p s fp fs ps fps

TPTP 1658 1717 1717 1720 1719 1724 1720 1723
SH 245 255 260 259 255 254 258 254

Figure 4.2: Proved problems, per used oracle

JP procedure’s main bottlenecks. The raw evaluation data show that on TPTP benchmarks,
complete and pragmatic configurations differ in the set of problems they solve—cv solves
19 problems not solved by pv42222, whereas pv42222 solves 34 problems cv does not solve.
Similarly, comparing the pragmatic configurations with each other, pv63333 and pv42222 each
solve 13 problems that the other one does not. The overall higher success rate of pv21020
compared to pv21222 suggests that solving flex-flex pairs by trivial unifiers often suffices for
superposition-based theorem proving.

In some cases, using oracles can hurt the performance of Zipperposition. Using oracles
typically results in generating smaller CSUs, whose elements are more general substitu-
tions than the ones we obtain without oracles. These more general substitutions usually
contain more applied variables, which Zipperposition’s heuristics avoid due to their ex-
plosive nature. This can make Zipperposition postpone necessary inferences for too long.
Configuration n benefits from this effect and therefore solves 18 TPTP problems that no
other configuration in Figure 4.2 solves. The same effect also gives configurations with
only one oracle an advantage over configurations with multiple oracles on some problems.

The evaluation sheds some light on how often solid unification problems appear in
practice. The raw data show that configuration s solves 5 TPTP problems that neither f
nor p solve. Configuration f solves 8 TPTP problems that neither s nor p solve, while p
solves 9 TPTP problems that two other configurations do not. This suggests that the solid
oracle is slightly less beneficial than the fixpoint or pattern oracles, but still presents a
useful addition to the set of available oracles.

A subset of TPTP benchmarks, concerning operations on Church numerals, is de-
signed to test the efficiency of higher-order unification. Our procedure performs excep-
tionally well on these problems—it solves all of them, usually faster than other competitive
higher-order provers. There are 11 benchmarks in the NUM category of TPTP that contain
conjectures about Church numerals: NUM020^1, NUM021^1, NUM415^1, NUM416^1, NUM417^1,
NUM418^1, NUM419^1, NUM798^1, NUM799^1, NUM800^1, and NUM801^1. We evaluated those
problems using the same CPU nodes and the same time limits as above. In addition to Zip-
perposition, we used all higher-order provers that took part in the 2019 edition of CASC
[160] (in the THF category) for this evaluation: CVC4 1.7 [12], Leo-III 1.4 [153], Satallax
3.4 [39], Vampire 4.4 THF [100]. Figure 4.3 shows the CPU time needed to solve a problem
or “–” if the prover timed out.

4

86 Efficient Full Higher-Order Unification

CVC4 Leo-III Satallax Vampire Zipperposition (cv)

NUM020^1 – 0.46 – – 0.03
NUM021^1 – – – – 4.10
NUM415^1 45.80 0.34 0.21 0.42 0.03
NUM416^1 47.37 0.92 0.21 0.41 0.07
NUM417^1 – 49.73 0.30 0.40 0.45
NUM418^1 – 0.40 1.29 0.38 0.03
NUM419^1 – 0.42 23.33 0.37 0.03
NUM798^1 46.29 0.35 4.01 0.38 0.03
NUM799^1 – 5.05 – – 0.03
NUM800^1 – – – 0.37 3.15
NUM801^1 – 0.73 38.77 – 0.50

Figure 4.3: Time needed to prove a problem, in seconds.

4.9 Discussion and RelatedWork
The problem addressed in this chapter is that of designing a complete and efficient higher-
order unification procedure. Three main lines of research dominated the research field of
higher-order unification over the last forty years.

The first line of research went in the direction of finding procedures that enumerate
CSUs. The most prominent procedure designed for this purpose is the JP procedure [86].
Snyder and Gallier [150] also provide such a procedure, but instead of solving flex-flex
pairs systematically, their procedure blindly guesses the head of the necessary binding by
considering all constants in the signature and fresh variables of all possible types. Another
approach, based on higher-order combinators, is given by Dougherty [56]. This approach
blindly creates (partially applied) S-, K-, and I-combinator bindings for applied variables,
which results in returning many redundant unifiers, as well as in nonterminating behavior
even for simple problems such as 𝑋 a = a.

The second line of research is concerned with enumerating preunifiers. The most
prominent procedure in this line of research is Huet’s [82]. The Snyder–Gallier proce-
dure restricted to not solving flex-flex pairs is a version of the PT procedure presented in
Sect. 4.5. It improves Huet’s procedure by featuring a Solution rule.

The third line of research gives up the expressiveness of the full 𝜆-calculus and focuses
on decidable fragments. Patterns [124] are arguably the most important such fragment in
practice, with implementations in Isabelle [125], Leo-III [153], Satallax [39], 𝜆Prolog [118],
and other systems. Functions-as-constructors [105] unification subsumes pattern unifi-
cation but is significantly more complex to implement. Prehofer [133] lists many other
decidable fragments, not only for unification but also preunification and unifier existence
problems. Most of these algorithms are given for second-order terms with various con-
straints on their variables. Finally, one of the first decidability results is Farmer’s discovery
[61] that higher-order unification of terms with unary function symbols is decidable.

Our procedure draws inspiration from and contributes to all three lines of research.
Accordingly, its advantages over previously known procedures can be laid out along those

4.10 Conclusion

4

87

three lines. First, our procedure mitigates many issues of the JP procedure. Second, it can
be modified not to solve flex-flex pairs, and become a version of Huet’s procedure with
important built-in optimizations. Third, it can integrate any oracle for problemswith finite
CSUs, including the one we discovered.

The implementation of our procedure in Zipperposition was one of the reasons this
prover evolved from proof-of-concept prover for higher-order logic to competitive higher-
order prover. Shortly after the procedure was implemented, in the 2020 edition of CASC,
Zipperposition won the THF division.

4.10 Conclusion
We presented a procedure for enumerating a complete set of higher-order unifiers that is
designed for efficiency. Due to a design that restricts the search space and a tight integra-
tion of oracles, it reduces the number of redundant unifiers returned and gives up early
in cases of nonunifiability. In addition, we presented a new fragment of higher-order
terms that admits finite CSUs. Our evaluation shows a clear improvement over previously
known procedures.

The procedure was a very prolific playground for tuning various heuristics to improve
the success rate. In Chapter 6 we discuss some of the Zipperposition parameters we tuned
to make better use of the procedure. The procedure also forms the basis of the unifica-
tion procedure implemented in 𝜆E, the full higher-order extension of Ehoh, described in
Chapter 7.

5

89

5
Boolean Reasoning in a Higher-Order

Superposition Prover

Joint work with Visa Nummelin

We present a pragmatic approach to extending a Boolean-free higher-order superposition cal-
culus to support Boolean reasoning. Our approach extends inference rules that have been used
only in a first-order setting and uses some rules previously implemented in higher-order pro-
vers, as well as new rules. We have implemented the approach in the Zipperposition theorem
prover. The evaluation shows highly competitive performance of our approach and a clear
improvement over previous techniques.

In this work I implemented and evalauted most of the described approaches. Visa Nummelin implemented the
FOOL preprocessing module.

5

90 Boolean Reasoning in a Higher-Order Superposition Prover

5.1 Introduction
In Chapter 1 I motivated the work presented in this thesis by the need to bridge the gap
between higher-order frontends and first-order backends. This gap is traditionally bridged
using translations from higher-order to first-order logic [117, 141]. However, as shown in
Chapter 3, translations are usually less efficient than native support. The distinguishing
features of higher-order logic used by proof assistants that the translation must eliminate
include 𝜆 binders, function extensionality—the property that functions are equal if they
agree on every argument, described by the axiom ∀∀∀𝑥𝑦. (∀∀∀𝑧.𝑥 𝑧 ≈≈≈ 𝑦 𝑧)→→→𝑥 ≈≈≈ 𝑦—and formu-
las occurring as arguments of function symbols [117].

As mentioned in Sect. 2.5.6, Bentkamp et al. developed 𝜆Sup, a complete higher-order
calculus that alleviates the need to translate 𝜆-terms and function extensionality. Kotel-
nikov et al. [98, 99] extended the language of first-order logic to support the third feature
of higher-order logic that requires translation. They described two approaches: One based
on a calculus-level treatment of Booleans and another that requires no changes to the cal-
culus, based on preprocessing.

To fully bridge the gap between higher-order and first-order tools, we combine the two
approaches: We take 𝜆Sup as our basis and extend it with inference rules that reason with
Boolean terms. In early work, Kotelnikov et al. [99] have described a FOOL paramodula-
tion rule that, under some order requirements, removes the need for the axiom describing
the Boolean domain—∀∀∀𝑝. 𝑝 ≈≈≈ ⊤⊤⊤ ∨ 𝑝 ≈≈≈ ⊥⊥⊥. In this approach, it is assumed that a problem
with formulas occurring as arguments of symbols is translated to first-order logic using a
translation they describe.

The backbone of our approach is based on an extension of this rule to higher-order
logic: We do not translate away any Boolean structure that is nested inside non-Boolean
terms and allow our rule to hoist the nested Booleans to the literal level. Then, we clausify
the resulting formula (i.e., a clause containing formulas in literals) using a new rule.

An important feature that we inherit by building on top of 𝜆Sup is support for function
extensionality. Moving to higher-order logic with Booleans also means that we need to
consider Boolean extensionality: ∀∀∀𝑝𝑞. (𝑝 ↔↔↔ 𝑞)→→→ 𝑝 ≈≈≈ 𝑞. We extend the rules of 𝜆Sup that
treat function extensionality to also treat Boolean extensionality.

Rules that extend the two orthogonal approaches form the basis of our support for
Boolean reasoning (Sect. 5.3). In addition, we have implemented rules that are inspired
by the ones used in the higher-order provers Leo-III [153] and Satallax [39], such as elim-
ination of Leibniz equality, primitive instantiation, and treatment of the choice operator
[2]. We have also designed new rules including those that use higher-order unification
to resolve Boolean formulas that are hoisted to the literal level, delay clausification of
nonatomic literals, and reason about formulas under 𝜆-binders. Even though the rules are
inspired by the ones of refutationally complete higher-order provers, we do not guarantee
completeness of our extension of 𝜆Sup. Using the insights that we gained with this incom-
plete extension of 𝜆Sup to full higher-order logic, Bentkamp et al. designed a complete
calculus for full higher-order logic—𝑜𝜆Sup [17].

We compare our native approach with two alternatives that are based on preprocess-
ing (Sect. 5.4). First, we compare it to an axiomatization of the theory of Booleans. Second,
inspired by work of Kotelnikov et al. [98], we implement the preprocessing approach that
does not require introduction of Boolean axioms. We discuss some examples, coming from

5.2 Background

5

91

TPTP [157], that illustrate advantages and disadvantages of our approach (Sect. 5.5).
The theorem prover Zipperposition [48, 49] was used by Bentkamp et al. to implement𝜆Sup. We further extend their implementation based on the approach presented in this

chapter.
We performed an extensive evaluation of our approach (Sect. 5.6). In addition to eval-

uating different configurations of our new rules, we have compared them to full higher-
order provers CVC4, Leo-III, Satallax, and Vampire. The results suggest that it is beneficial
to natively support Boolean reasoning—the approach outperforms preprocessing-based
approaches. Furthermore, it is very competitive in comparison to state-of-the-art higher-
order provers. We discuss the differences between our approach and the approaches our
work is based on, as well as related approaches (Sect. 5.7).

5.2 Background
We base our work (and parts of the following text) on Bentkamp et al.’s [18] extensional
polymorphic clausal higher-order logic. This logic supports rank-1 polymorphism, as de-
fined by the TH1 format of the TPTP [88]. We extend the syntax of this logic by adding
logical connectives to the signature. The semantics of the logic is extended by interpret-
ing Boolean type 𝑜 as a two-element domain. This amounts to extending the logic to full
higher-order logic. Taking a different perspective, this logic is an extension of the one pre-
sented in Chapter 3 with 𝜆-abstraction, polymorphic types, and native logical connectives.
For reference, we provide a description of this polymorphic logic. For the notions that are
not defined here, we assume the definitions introduced in Chapter 2.

A signature is a quadruple (Σty,𝒱ty,Σ,𝒱) where Σty is a set of type constructors, 𝒱ty
is a set of type variables and Σ and 𝒱 are sets of constants and term variables, respec-
tively. We require nullary type constructor 𝑜 as well as binary constructor → to be inΣty. Types 𝜏 ,𝜐 are either type variables 𝛼 ∈ 𝒱ty or of the form 𝜅(𝜏1,…𝜏𝑛) where 𝜅 is an𝑛-ary type constructor. We write 𝜅 for 𝜅(), 𝜏 → 𝜐 for → (𝜏,𝜐), and we drop parentheses
to shorten 𝜏1 → (⋯→ (𝜏𝑛−1 → 𝜏𝑛)⋯) into 𝜏1 →⋯→ 𝜏𝑛 . Each symbol in Σ is assigned a
type declaration of the form Π𝛼𝑛. 𝜏 where all variables occurring in 𝜏 are among 𝛼𝑛 .

Function symbols a,b, f,g,… are elements of Σ; their type declarations are written as
f ∶ Π𝛼𝑛. 𝜏 . Set 𝒱 contains both free and bound variables, following the distinction in-
troduced in Sect. 2.3. Free term variables from the set 𝒱 are written 𝐹 ,𝐺,𝑋 ,𝑌 ,… and we
denote their types as 𝑋 ∶ 𝜏 . Bound term variables are written 𝑥,𝑦,𝑧,…, and their types are
similarly denoted. When the type is not important, we omit type declarations. We assume
that symbols⊤⊤⊤,⊥⊥⊥,¬¬¬,∧∧∧,∨∨∨,→→→,↔↔↔ with their standard meanings and type declarations are el-
ements of Σ. Furthermore, we assume that polymorphic symbols∀∀∀ and ∃∃∃with type declara-
tionsΠ𝛼. (𝛼 →𝑜)→𝑜 and≈≈≈ ∶Π𝛼. 𝛼 → 𝛼 → 𝑜 are in Σ, with their standardmeanings. All
these symbols are called logical symbols. We use infix notation for binary logical symbols.

Terms are defined inductively as follows. Free (𝑋 ∶ 𝜏) and bound (𝑥 ∶ 𝜏) variables are
terms of type 𝜏 . If f ∶ Π𝛼𝑛. 𝜏 is in Σ and 𝜐𝑛 is a tuple of types, called type arguments,
then f⟨𝜐𝑛⟩ (written as f if 𝑛 = 0, or if type arguments can be inferred from the context) is a
term of type 𝜏{𝛼𝑛 ↦ 𝜐𝑛}, called constant. If 𝑥 is a bound variable of type 𝜏 and 𝑠 is a term
of type 𝜐, then 𝜆𝑥. 𝑠 is a term of type 𝜏 → 𝜐. If 𝑠 and 𝑡 are of type 𝜏 → 𝜐 and 𝜏 , respec-
tively, then 𝑠 𝑡 is a term of type 𝜐. We call terms of Boolean type (𝑜) formulas and denote
them by 𝑓 ,𝑔,ℎ,…; we use 𝑃,𝑄,𝑅,… for free variables whose result type is 𝑜 and p,q, r for

5

92 Boolean Reasoning in a Higher-Order Superposition Prover

constants with the same result type. Formulas whose top-level symbol is not logical are
called atoms. Unless stated otherwise, we view terms as 𝛼𝛽𝜂-equivalence classes, with the𝜂-long 𝛽-reduced form as the representative.

Given a formula 𝑓 , we call its Boolean subterm 𝑓 |𝑝 a top-level Boolean if for all proper
prefixes 𝑞 of 𝑝, the head of 𝑓 |𝑞 is a logical constant. Otherwise, we call it a nested Boolean.
For example, in the formula 𝑓 = ha ≈≈≈ g (p→→→ q)∨∨∨¬¬¬p, 𝑓 |1 and 𝑓 |2 are top-level Booleans,
while 𝑓 |1.2.1 is a nested Boolean, as well as its subterms. First-order logic allows only
top-level Booleans, whereas nested Booleans are characteristic for higher-order logic.

Our calculus works with the clausal structure described in Sect. 2.4. However, its
higher-order nature allows representing formula 𝑓 as a singleton clause containing only
literal 𝑓 .
5.3 The Native Approach
Zipperposition already had some support for Boolean reasoning before we started extend-
ing 𝜆Sup. In this section, we first describe the internals of Zipperposition responsible for
reasoning with Booleans. We continue by describing the rules that we have implemented.
For ease of presentation we divide them into three categories.

5.3.1 Support for Booleans in Zipperposition
As mentioned in Chapter 4, Zipperposition is an open source prover written in OCaml.
From its inception, it was designed as a prover that supports easy extension of its base
superposition calculus to various theories, including arithmetic, induction, and limited
support for higher-order logic [48, 49].

In Zipperposition, applications are represented in flattened, spine notation (Sect. 3.3).
This means that the higher-order term (fa)b is represented the same as the first-order
term f(a,b). In addition, Zipperposition uses associativity of ∧∧∧ and ∨∨∨ to flatten out the
nested applications of these symbols. For example, terms p∧∧∧ (q∧∧∧ r) and (p∧∧∧q)∧∧∧ r are inter-
nally stored as ∧∧∧pqr. Zipperposition’s support for 𝜆-terms is used to represent quantified
nested Booleans: Formulas ∀∀∀𝑥. 𝑓 and ∃∃∃𝑥.𝑓 are represented as ∀∀∀(𝜆𝑥. 𝑓) and ∃∃∃(𝜆𝑥. 𝑓). After
clausification of the input problem, no nested Booleans are modified or renamed using
fresh predicate symbols.

The version of Zipperposition preceding our modifications distinguished between non-
equational and equational literals. Following E [147], we modified Zipperposition to rep-
resent all literals equationally: a nonequational literal 𝑓 is stored as 𝑓 ≈ ⊤⊤⊤, whereas ¬¬¬𝑓
is stored as 𝑓 ≉ ⊤⊤⊤. Equations of the form 𝑓 ≈ ⊥⊥⊥ and 𝑓 ≉ ⊥⊥⊥ are transformed into 𝑓 ≉ ⊤⊤⊤ and𝑓 ≈ ⊤⊤⊤, respectively.
5.3.2 Core Rules
Kotelnikov et al. [99], to the best of our knowledge, pioneered the approach of extending
a first-order superposition prover to support nested Booleans. They call including the ax-
iom ∀∀∀𝑝. 𝑝 ≈⊤⊤⊤∨∨∨𝑝 ≈≈≈⊥⊥⊥ “a recipe for disaster”. To combat the explosive behavior of the axiom,
they impose the following two requirements to the simplification order ≻: ⊤⊤⊤ ≻⊥⊥⊥ and⊤⊤⊤ and⊥⊥⊥ are two smallest ground terms with respect to ≻. If these requirements are met, there
is no self-paramodulation of the clause and the only paramodulation possible is from the

5.3 The Native Approach

5

93

literal 𝑝 ≈ ⊤⊤⊤ of the mentioned axiom into a Boolean subterm of another clause. Finally,
Kotelnikov et al. replace the axiom with the inference rule FOOL paramodulation (FP):𝐶[𝑓]

FP𝐶[⊤⊤⊤]∨ 𝑓 ≈ ⊥⊥⊥
where 𝑓 is a nested non-variable Boolean subterm of clause 𝐶 , different from ⊤⊤⊤ and ⊥⊥⊥. In
addition, they translate the initial problem containing nested Booleans to first-order logic
without interpreted Booleans; thus, the symbols ⊤⊤⊤ and ⊥⊥⊥ and the type 𝑜 correspond to
proxy symbols and types introduced during the translation.

We created two rules that are syntactically similar to FP but are adapted for higher-
order logic with one key distinction—we do not perform any translation:𝐶[𝑓]

CASES𝐶[⊥⊥⊥]∨ 𝑓 ≈ ⊤⊤⊤ 𝐶[𝑓]
CASESSIMP𝐶[⊥⊥⊥]∨ 𝑓 ≈ ⊤⊤⊤ 𝐶[⊤⊤⊤]∨ 𝑓 ≉ ⊤⊤⊤

The prover that uses the rules should not include them both at the same time. In addition,
since literals 𝑓 ≈ ⊥⊥⊥ are represented as negative equations 𝑓 ≉ ⊤⊤⊤, which cannot be used to
paramodulate from, we change the first requirement on the order to ⊥⊥⊥ ≻⊤⊤⊤, making ⊤⊤⊤ the
smallest symbol.

These two rules hoist Boolean subterms 𝑓 to the literal level; therefore, some conclu-
sions of CASES and CASESSIMP will have literals of the form 𝑓 ≈⊤⊤⊤ (or 𝑓 ≉⊤⊤⊤) where 𝑓 is not
an atom. This introduces the need for the rule called immediate clausification (IC), where𝐷𝑚 are defined below: 𝐶

IC𝐷1 ⋯ 𝐷𝑚
Let 𝑠 ≈̇ 𝑡 denote ≈ or ≉. We say that a clause is standard if all of its literals are of the form𝑠 ≈̇ 𝑡 , where 𝑠 and 𝑡 are not Booleans or of the form 𝑓 ≈̇ ⊤⊤⊤, where the head of 𝑓 is not a
logical symbol. The rule IC is applicable if clause 𝐶 = 𝐿1 ∨ ⋯ ∨ 𝐿𝑛 is not standard. The
resulting clauses 𝐷𝑚 represent the result of clausification of the formula ∀∀∀𝑥 . 𝐿1 ∨∨∨⋯∨∨∨ 𝐿𝑛
where 𝑥 consists of all free variables of 𝐶 . Using Boolean extensionality, Zipperposition’s
clausification algorithm treats Boolean equality as equivalence (i.e., it replaces ≈⟨𝑜⟩ with↔↔↔).

An advantage of leaving nested Booleans unmodified is that the prover will be able
to prove some problems containing them without using the prolific rules described above.
For example, given two clauses f (p𝑋 →→→ p𝑌) ≈ a and f (pa→→→ pb) ≉ a, the empty clause
can easily be derived without the above rules. A disadvantage of this approach is that the
proving process will periodically be interrupted by expensive calls to the clausifier.

If implemented naively, rules CASES and CASESSIMP can result in many redundant
clauses. Consider the following example: let p ∶ 𝑜 → 𝑜, a ∶ 𝑜 and consider a clause set
containing p (p (p (pa))) ≈ ⊤⊤⊤. Then, the clause 𝐶 = a ≈ ⊤⊤⊤ ∨ p⊥⊥⊥ ≈ ⊤⊤⊤ can be derived in eight
ways using the rules, depending on which nested Boolean subterm was chosen for the in-
ference. In general, if a clause has a subterm occurrence of the form p𝑛 a, where both p and
a have result type 𝑜, the clause a ≈⊤⊤⊤ ∨ p⊥⊥⊥ ≈⊤⊤⊤ can be derived in at least 2𝑛−1 ways. To com-
bat these issues we implemented pragmatic restrictions of the rule: only the 𝑓 which is

5

94 Boolean Reasoning in a Higher-Order Superposition Prover

the leftmost outermost (or innermost) eligible subterm will be considered. With this mod-
ification 𝐶 can be derived in only one way. Furthermore, some intermediate conclusions
of the rules will not be derived, pruning the search space.

The clausification algorithm by Nonnengart and Weidenbach [126] eagerly simplifies
the input problem using Boolean equivalences before clausifying it. For example, the
formula p ∧∧∧⊤⊤⊤ is replaced by p. To simplify nested Booleans we implemented the rule
BOOLSIMP parameterized by a set of rewrite rules E:𝐶[𝜎(𝑓)]

BOOLSIMP𝐶[𝜎(𝑔)]
where 𝑓 ⟶ 𝑔 ∈ 𝐸 and 𝜎 is any substitution. In the current implementation of Zipperpo-
sition, 𝐸 contains the rules described by Nonnengart and Weidenbach [126, Sect. 3]. This
set contains the rules describing how each logical symbol behaves when given arguments⊤⊤⊤ or ⊥⊥⊥: for example, it includes (⊤⊤⊤→→→ 𝑝) ⟶ 𝑝 and (𝑝 →→→⊤⊤⊤) ⟶⊤⊤⊤. Leo-III implements
a similar rule, called simp [151, Sect. 4.2.1.].

Our decision to represent negative atoms as negative equations was motivated by the
need to alter Zipperposition’s earlier behavior as little as possible. Namely, negative atoms
are not used as literals that can be used to paramodulate from, and as such added to the
laziness of the superposition calculus. However, it might be useful to consider unit clauses
of the form 𝑓 ≉ ⊤⊤⊤ as 𝑓 ≈ ⊥⊥⊥ to strengthen rewriting. To that end, we have introduced the
following rule: 𝑓 ≉ ⊤⊤⊤ 𝐶[𝜎(𝑓)]

BOOLDEMOD𝑓 ≉ ⊤⊤⊤ 𝐶[⊥⊥⊥]
5.3.3 Higher-Order Considerations
To achieve refutational completeness of higher-order resolution and similar calculi, it is
necessary to instantiate variables with result type 𝑜, predicate variables, with arbitrary
formulas [2, 151]. Fortunately, we can approximate the formulas using a complete set of
logical symbols (e.g., ¬¬¬ , ∀∀∀, and ∧∧∧). Since such an approximation is not only necessary for
completeness of some calculi, but possibly useful in practice, we implemented the primi-
tive instantiation (PI) rule: 𝐶 ∨ (𝜆𝑥 . 𝑃 𝑠𝑛) ≈̇ 𝑡 PI{𝑃 ↦ 𝑓 }(𝐶 ∨ (𝜆𝑥 . 𝑃 𝑠𝑛) ≈̇ 𝑡)
where 𝑃 is a free variable of the type 𝜏1 → ⋯ → 𝜏𝑛 → 𝑜. Choosing a different 𝑓 that
instantiates 𝑃 , we can balance between explosiveness of approximating a complete set
of logical symbols and incompleteness of pragmatic approaches. We borrow the notion
of imitation from higher-order unification jargon (Sect. 4.3), and we say that the term𝜆𝑥𝑚. f (𝑌1 𝑥𝑚)⋯(𝑌𝑛 𝑥𝑚) is an imitation of constant f ∶ 𝜏1 → ⋯ → 𝜏𝑛 → 𝜏 for some vari-
able 𝑍 of type 𝜈1 → ⋯ → 𝜈𝑚 → 𝜏 . Variables 𝑌𝑛 are fresh free variables, where each 𝑌𝑖
has the type 𝜈1 → ⋯ → 𝜈𝑚 → 𝜏𝑖 ; variable 𝑥𝑖 is of type 𝜈𝑖 .

Rule PI was already implemented by Simon Cruanes in Zipperposition, before we
started our modifications. Its implementation contains the following modes that gener-
ate sets of possible terms 𝑓 for 𝑃 ∶ 𝜏1 →⋯→𝜏𝑛 → 𝑜: Full, Pragmatic, and Imit⋆. In Imit⋆,

5.3 The Native Approach

5

95

⋆ is an element of a set of logical constants 𝑆 = {∧∧∧,∨∨∨,≈≈≈⟨𝛼⟩,¬¬¬,∀∀∀,∃∃∃}. Mode Full generates
imitations (for 𝑃) of all elements of 𝑆. Mode Pragmatic generates imitations of ¬¬¬ , ⊤⊤⊤, and⊥⊥⊥; if there exist indices 𝑖, 𝑗 such that 𝑖 ≠ 𝑗 and 𝜏𝑖 = 𝜏𝑗 , then it generates 𝜆𝑥𝑛. 𝑥𝑖 ≈≈≈ 𝑥𝑗 ; if there
exist indices 𝑖, 𝑗 such that 𝑖 ≠ 𝑗, and 𝜏𝑖 = 𝜏𝑗 = 𝑜, then it generates 𝜆𝑥𝑛.𝑥𝑖 ∧∧∧𝑥𝑗 and 𝜆𝑥𝑛.𝑥𝑖 ∨∨∨𝑥𝑗 ;
if for some 𝑖, 𝜏𝑖 = 𝑜, then it generates 𝜆𝑥𝑛.𝑥𝑖 . Mode Imit⋆ generates imitations of⊤⊤⊤,⊥⊥⊥, and⋆. In addition, Imit∀∀∀∃∃∃ generates imitations of both ∀∀∀ and ∃∃∃.

While experimenting with our implementation we noticed some proof patterns that
led us to come up with the following modifications. First, it often suffices to perform PI
only on initial clauses—which is why we allow the rule to be applied only to the clauses
created using at most 𝑘 generating inferences. Second, if the rule was used in the proof,
its premise is usually only used as part of that inference—which is why we implemented a
version of PI that removes the clause after all possible PI inferences have been performed.
We observed that the mode Imit⋆ is useful in practice since often approximation of a single
logical symbol suffices.

The axiom of choice is notoriously difficult to handle efficiently in higher-order pro-
vers. Andrews formulates this axiom as ∀∀∀𝑝. (∃∃∃𝑥.𝑝 𝑥)→→→𝑝(𝜀 𝑝), where 𝜀 ∶ Π𝛼. (𝛼 →𝑜)→𝛼
denotes the choice operator [2]. After clausification, this axiom becomes 𝑃 𝑋 ≉⊤⊤⊤ ∨ 𝑃 (𝜀 𝑃) ≈⊤⊤⊤. Since the term 𝑃 𝑋 matches any Boolean term in the proof state, this axiom is very
explosive. Therefore, Leo-III [153] heuristically recognizes symbols that correspond to
choice and deals with them on the calculus level. Namely, whenever a clause 𝐶 = 𝑃 𝑋 ≉⊤⊤⊤ ∨ 𝑃 (f𝑃) ≈ ⊤⊤⊤ is chosen for processing, 𝐶 is removed from the proof state and f is added
to the set of choice functions CF (which initially contains just 𝜀). Later, elements of CF are
used to heuristically instantiate the axiom of choice. We reused the method of recognizing
choice functions, but generalized the rule for creating the instance of the axiom (assuming𝜉 ∈ CF and 𝑋 and 𝑧 are fresh variables):𝐶[𝜉 𝑡]

CHOICE𝑋 (𝑡 𝑌) ≉ ⊤⊤⊤ ∨ 𝑋 (𝑡 (𝜉 (𝜆𝑧.𝑋 (𝑡 𝑧)))) ≈ ⊤⊤⊤
Let 𝐷 be the conclusion of CHOICE. The fresh variable 𝑋 in 𝐷 acts as an arbitrary context
around 𝑡 , the chosen instantiation for 𝑃 from the axiom of choice; the variable 𝑋 can later
be replaced by imitations of logical symbols to create more complex instantiations of the
choice axiom. To generate useful instances early, we create two instances: {𝑋 ↦ 𝜆𝑧.𝑧}(𝐷)
and {𝑋 ↦𝜆𝑧.¬¬¬ 𝑧}(𝐷). Then, depending on Zipperposition options,𝐷 will either be deleted
or kept. Note that 𝐷 will not subsume its instances, as the matching algorithm Zipperposi-
tion uses favors performance over completeness and is thus too weak for this [18, Sect. 6]

Most provers natively support both functional and Boolean extensionality reasoning:
Bhayat et al. [25]modify first-order unification to return unification constraints consisting
of pairs of terms of functional type, whereas Steen relies on the unification rules of Leo-
III’s calculus [151, Sect. 4.3.3] to deal with extensionality. As a pragmatic extension of the𝜆Sup calculus, Bentkamp et al. [18] propose to alter the core generating inference rules of
superposition (Sect. 2.5.3) to support functional extensionality. Instead of requiring that
terms involved in the inference are unifiable, it is required that they can be decomposed
into disagreement pairs such that at least one of the disagreement pairs is of functional type.
Disagreement pairs of terms 𝑠 and 𝑡 of the same type are defined inductively using function
dp: dp(𝑠, 𝑡) = ∅ if 𝑠 and 𝑡 are equal; dp(𝑎 𝑠𝑛,𝑏 𝑡𝑚) = {(𝑎 𝑠𝑛,𝑏 𝑡𝑚)} if 𝑎 and 𝑏 are different heads;

5

96 Boolean Reasoning in a Higher-Order Superposition Prover

dp(𝜆𝑥. 𝑠,𝜆𝑦. 𝑡) = {(𝜆𝑥. 𝑠,𝜆𝑦. 𝑡)}; dp(𝑎 𝑠𝑛,𝑎 𝑡𝑛) = ⋃𝑛𝑖=1 dp(𝑠𝑖 , 𝑡𝑖). Then the extensionality rules
are stated as follows: 𝑠 ≈ 𝑡 ∨ 𝐶 𝑢[𝑠′] ≈̇ 𝑣 ∨ 𝐷

ABSSUP𝜎(𝑠1 ≉ 𝑠′1 ∨ ⋯ ∨ 𝑠𝑛 ≉ 𝑠′𝑛 ∨ 𝑢[𝑡] ≈̇ 𝑣 ∨ 𝐶 ∨ 𝐷)𝑠 ≉ 𝑠′ ∨ 𝐶
ABSER𝜎(𝑠1 ≉ 𝑠′1 ∨ ⋯ ∨ 𝑠𝑛 ≉ 𝑠′𝑛 ⋯ ∨ 𝐶)𝑠 ≈ 𝑡 ∨ 𝑠′ ≈ 𝑢 ∨ 𝐶

ABSEF𝜎(𝑠1 ≉ 𝑠′1 ∨ ⋯ ∨ 𝑠𝑛 ≉ 𝑠′𝑛 ∨ 𝑡 ≉ 𝑢 ∨ 𝑠′ ≈ 𝑢 ∨ 𝐶)
In each of the rules, 𝜎 is an MGU of the types of 𝑠 and 𝑠′, and dp(𝜎(𝑠),𝜎(𝑠′)) = {(𝑠1, 𝑠′1),… ,(𝑠𝑛, 𝑠′𝑛)}. Rules ABSSUP, ABSER, and ABSEF are extensional versions of superposition,
equality resolution, and equality factoring (Sect. 2.5.3). All side conditions for extensional
rules are the same as for the standard rules, except that the condition that 𝑠 and 𝑠′ are
unifiable is replaced by the condition that 𝑛 > 0 and at least one 𝑠𝑖 is of functional type.
By ABS we denote the union of these three rules. We extend ABS to support Boolean
extensionality by requiring that at least one 𝑠𝑖 is of functional or type 𝑜, and adding the
condition “dp(𝑓 ,𝑔) = {(𝑓 ,𝑔)} if 𝑓 and 𝑔 are different formulas” to the definition of dp. If
another condition of dp’s definition is also applicable, the newly added one is preferred.
In the rest of the text ABS refers to the version that supports Boolean extensionality.

Consider the clause f (¬¬¬p∨∨∨¬¬¬q) ≉ f (¬¬¬(p∧∧∧ q)). This clause is unsatisfiable, as the argu-
ments of f on the different sides of the disequation are Boolean-extensionally equal. With-
out the ABS rules Zipperposition relies on the CASES(SIMP) and IC rules to derive the empty
clause. On the other hand, ABSER generates 𝐶 =¬¬¬p∨∨∨¬¬¬q ≉¬¬¬(p∧∧∧q). Then, 𝐶 gets clausified
using IC, effectively reducing the problem to ¬¬¬(¬¬¬p∨∨∨¬¬¬q↔↔↔¬¬¬(p∧∧∧q)), which is first-order.

Zipperposition restricts ABSSUP by requiring that 𝑠 and 𝑠′ are not of function or
Boolean type. If the terms are of function type, our experience is that a better treatment of
function extensionality is to apply fresh free variables (or Skolem terms, depending on the
sign [18]) to both sides of a (dis)equation to reduce it to a first-order literal; Boolean exten-
sionality is usually better supported by applying IC on the top-level Boolean term. Thus,
for the following discussion, we assume 𝑠 and 𝑠′ are not 𝜆-abstractions or formulas. Then,
ABSSUP is applicable if 𝑠 and 𝑠′ have the same head, and a functional or Boolean subterm.
To speed up retrieval of such terms, we added an index that maps symbols to positions in
clauses where they appear as a head of a term that has a functional or Boolean subterm.
This index is empty for first-order problems, incurring no overhead if extensionality rea-
soning is not needed. One more restriction we implemented is that we do not apply the
ABS rules if all disagreement pairs have at least one side whose head is a variable; those
will be dealt with more efficiently using the core rules of the superposition calculus. To
simplify the resulting clauses of ABS rules, we also eagerly remove literals 𝑠𝑖 ≉ 𝑠′𝑖 using
a simplifying version of ER (Sect. 2.5.3). In particular, we apply the first unifier returned
by the terminating, pragmatic variant of unification algorithm described in Sect. 4.3, and
remove the premise after the conclusion of ER has been computed.

Expressiveness of higher-order logic allows users to define equality using a single ax-
iom, called Leibniz equality [2]: ∀∀∀𝑥𝑦. (∀∀∀𝑝.𝑝 𝑥 →→→ 𝑝𝑦) →→→ 𝑥 ≈≈≈ 𝑦 . Intuitively, it embodies

5.3 The Native Approach

5

97

the principle that if two terms are indistinguishable by propositions, they must be equal.
Leibniz equality often appears in TPTP problems [157]. Since modern provers have na-
tive support for equality, it is usually beneficial to recognize and replace occurrences of
Leibniz equality by the natively supported one.

Before we did our modifications, Zipperposition had a powerful rule that recognizes
clauses that contain variations of Leibniz equality and instantiates themwith native equal-
ity. This rule was designed by Simon Cruanes, and to the best of our knowledge, it has
not been documented so far. With his permission we describe this rule as follows:𝑃 𝑠1𝑛 ≈ ⊤⊤⊤ ∨ ⋯ ∨ 𝑃 𝑠𝑖𝑛 ≈ ⊤⊤⊤ ∨ 𝑃 𝑡1𝑛 ≉ ⊤⊤⊤ ∨ ⋯ ∨ 𝑃 𝑡𝑗𝑛 ≉ ⊤⊤⊤ ∨ 𝐶

ELIMPREDVAR𝜎(𝑃 𝑠1𝑛 ≈ ⊤⊤⊤ ∨ ⋯ ∨ 𝑃 𝑠𝑖𝑛 ≈ ⊤⊤⊤) ∨ 𝐶
where 𝑃 is a free variable, that does not occur in any 𝑠𝑙𝑘 or 𝑡𝑙𝑘 , or in 𝐶 ; 𝜎 is defined as{𝑃 ↦ 𝜆𝑥𝑛.⋁⋁⋁𝑗𝑘=1(⋀⋀⋀𝑛𝑙=1𝑥𝑙 ≈ 𝑡𝑘𝑙)}.

To better understand how this rule removes variable-headed negative literals, consider
the clause 𝐶 = 𝑃 a1 a2 ≈ ⊤⊤⊤ ∨ 𝑃 b1 b2 ≉ ⊤⊤⊤ ∨ 𝑃 c1 c2 ≉ ⊤⊤⊤. The rule ELIMPREDVAR will generate𝜎 = {𝑃 ↦ 𝜆𝑥𝑦. (𝑥 ≈≈≈ b1 ∧∧∧ 𝑦 ≈ b2)∨∨∨ (𝑥 ≈≈≈ c1 ∧∧∧ 𝑦 ≈≈≈ c2)}. After applying 𝜎 to 𝐶 and subsequent𝛽-reduction, the negative literal 𝑃 b1 b2 ≉⊤⊤⊤will reduce to (b1 ≈≈≈ b1∧∧∧b2 ≈≈≈ b2)∨∨∨(b1 ≈≈≈ c1∧∧∧b2 ≈
c2) ≉ ⊤⊤⊤, which is equivalent to ⊥⊥⊥. Thus, we can remove this literal and all negative literals
of the form 𝑃 𝑡𝑛 ≉ ⊤⊤⊤ from 𝐶 and apply 𝜎 to the remaining ones.

The previous rule removes all variables occurring in disequations in one attempt. We
implemented two rules that behave more lazily, inspired by the ones present in Leo-III and
Satallax:𝑃 𝑠𝑛 ≈ ⊤⊤⊤ ∨ 𝑃 𝑡𝑛 ≉ ⊤⊤⊤ ∨ 𝐶

ELIMLEIBNIZ+𝜎(𝑠𝑖 ≈ 𝑡𝑖 ∨ 𝐶) 𝑃 𝑠𝑛 ≉ ⊤⊤⊤ ∨ 𝑃 𝑡𝑛 ≈ ⊤⊤⊤ ∨ 𝐶
ELIMLEIBNIZ−𝜎′(𝑠𝑖 ≈ 𝑡𝑖 ∨ 𝐶)

where 𝑃 is a free variable that does not occur in 𝑡𝑖 , 𝜎 = {𝑃 ↦ 𝜆𝑥𝑛. 𝑥𝑖 ≈ 𝑡𝑖}, and 𝜎′ = {𝑃 ↦𝜆𝑥𝑛.¬(𝑥𝑖 ≈ 𝑡𝑖)}. ELIMLEIBNIZ directly applies Leibniz equality: When the premise of Leib-
niz equality is clausified it becomes 𝑃 𝑋 ≉ ⊤⊤⊤ ∨ 𝑃 𝑌 ≈ ⊤⊤⊤. The rule then tries to find a similar
two-literal subclause in a clause 𝐶 , and if successful instantiates 𝐶 with a substitution that
asserts equality of 𝑋 and 𝑌 .

This rule differs from ELIMPREDVAR in three ways. First, it can replace a predicate
variable both with equality and disequality. Second, due to its simplicity, it usually does
not require IC as the following step. Third, it imposes much weaker conditions on 𝑃 .
However, removing all negative variables in one step might improve performance by
generating fewer intermediate clauses. Coming back to the example of the clause 𝐶 =𝑃 a1 a2 ≈ ⊤⊤⊤ ∨ 𝑃 b1 b2 ≉ ⊤⊤⊤ ∨ 𝑃 c1 c2 ≉ ⊤⊤⊤, we can apply ELIMLEIBNIZ+ using the substitution𝜎 = {𝑃 ↦ 𝜆𝑥𝑦. 𝑥 ≈ b1} to obtain the clause 𝐶′ = a1 ≈ b1 ∨ a1 ≉ c1, which is considerably
simpler than the one obtained by ELIMPREDVAR.

5.3.4 Additional Rules
Zipperposition’s pragmatic, incomplete unification algorithm uses a flattened representa-
tion of terms with logical operators ∧∧∧ and ∨∨∨ as heads to unify terms that are not unifiable
modulo 𝛼𝛽𝜂-equivalence, but are unifiable modulo associativity and commutativity of ∧∧∧

5

98 Boolean Reasoning in a Higher-Order Superposition Prover

and ∨∨∨. Let " denote either ∧∧∧ or ∨∨∨. When the unification algorithm is given two terms
" 𝑠𝑛 and " 𝑡𝑛 , where neither of 𝑠𝑛 nor 𝑡𝑛 contains duplicates, it performs the following
steps: First, it removes all terms that appear in both 𝑠𝑛 and 𝑡𝑛 from the two argument tu-
ples. Next, the remaining terms are sorted first by their head term and then their syntactic
weight. Finally, an attempt is made to unify sorted lists pairwise. As an example, consider
the problem of unifying the pair ∧∧∧(pa) (q (fa)) ?= ∧∧∧ (q (fa)) (𝑅 (f (fa))) where 𝑅 is a free
variable. If the arguments of ∧∧∧ are simply sorted as described above, we would try to unify
pa with q (fa), and fail to find a unifier. However, by removing the term q (fa) from the
argument lists, we will be left with the problem pa ?= 𝑅 (f (fa)) which has a unifier. This
approach enables us to find more unifiers than by simple syntactic unification.

The winner of the higher-order theorem division of the 2019 edition of CASC [160],
Satallax [39], has one crucial advantage over Zipperposition: it is based on higher-order
tableaux, and as such it does not require formulas to be converted to clauses. The ad-
vantage of tableaux is that once it instantiates a variable with a term, this instantiation
naturally propagates through the whole formula. In Zipperposition, which is based on𝜆Sup, the original formula is clausified and instantiating a variable in a clause 𝐶 does not
automatically instantiate it in all clauses that are results of clausification of the same for-
mula as 𝐶 . To mitigate this issue, we have created extensions of equality resolution and
equality factoring that take Boolean extensionality into account:

𝑠 ≈ 𝑠′ ∨ 𝐶
BOOLER𝜎(𝐶) 𝑃 𝑠𝑛 ≈ ⊤⊤⊤ ∨ 𝑠′ ≉ ⊤⊤⊤ ∨ 𝐶

BOOLEF+−𝜎(𝑠′ ≉ ⊤⊤⊤ ∨ 𝐶)𝑃 𝑠𝑛 ≉ ⊤⊤⊤ ∨ 𝑠′ ≈ ⊤⊤⊤ ∨ 𝐶
BOOLEF−+𝜎(𝑠′ ≈ ⊤⊤⊤ ∨ 𝐶) 𝑃 𝑠𝑛 ≉ ⊤⊤⊤ ∨ 𝑠′ ≉ ⊤⊤⊤ ∨ 𝐶

BOOLEF−−𝜎(𝑠′ ≉ ⊤⊤⊤ ∨ 𝐶)
All side conditions except for the ones concerning the unifiability of terms are as in the
original equality resolution and equality factoring rules. In rule BOOLER, 𝜎 is a unifier of 𝑠
and¬¬¬𝑠′. In the +− and −+ versions of BOOLEF, 𝜎 unifies 𝑃 𝑠𝑛 and¬¬¬𝑠′, and in the remaining
version it unifies 𝑃 𝑠𝑛 and 𝑠′. Intuitively, these rules bring Boolean (dis)equations in the
appropriate form for application of the corresponding base rules. In particular, for BOOLER
we interpret the equation 𝑠 ≈ 𝑠′ as 𝑠 ≉ ¬¬¬𝑠′, which allows us to simulate ER inference from
Sect. 2.5.3. For the BOOLEF family of rules, we convert disequations into equations using
the trick of negating one side to simulate EF. The rule BOOLER only considers literals of
the form 𝑠 ≈ 𝑡 . Equivalences 𝑠 ↔↔↔ 𝑡 =⊤⊤⊤ and disequivalences (𝑠 ↔↔↔ 𝑡) ≉ ⊤⊤⊤ are automatically
simplified to 𝑠 ≈ 𝑡 or 𝑠 ≉ 𝑡 . The example SET557^1 in Sect. 5.5 illustrates how the BOOL
family of rules helps solve problems that get obfuscated by clausification.

Another approach to mitigate harmful effects of immediate clausification is to delay it
as long as possible. Following the approach by Ganzinger and Stuber [69], we represent
every input formula 𝑓 as a unit clause 𝑓 ≈ ⊤⊤⊤ and use the following delayed clausification
(DC) rules:

5.3 The Native Approach

5

99

(𝑔 ∧∧∧ℎ) ≈ ⊤⊤⊤ ∨ 𝐶
DC∧∧∧𝑔 ≈ ⊤⊤⊤ ∨ 𝐶 ℎ ≈ ⊤⊤⊤ ∨ 𝐶 (𝑔 ∨∨∨ℎ) ≈ ⊤⊤⊤ ∨ 𝐶

DC∨∨∨𝑔 ≈ ⊤⊤⊤ ∨ ℎ ≈ ⊤⊤⊤ ∨ 𝐶 (𝑔 →→→ ℎ) ≈ ⊤⊤⊤ ∨ 𝐶
DC→→→𝑔 ≉⊤⊤⊤ ∨ ℎ ≈ ⊤⊤⊤ ∨ 𝐶(¬¬¬𝑔) ≈ ⊤⊤⊤ ∨ 𝐶

DC¬¬¬𝑔 ≉ ⊤⊤⊤ ∨ 𝐶 (∀∀∀𝑥.𝑔) ≈ ⊤⊤⊤ ∨ 𝐶
DC∀∀∀{𝑥 ↦ 𝑌}(𝑔) ∨ 𝐶 (∃∃∃𝑥.𝑔) ≈ ⊤⊤⊤ ∨ 𝐶

DC∃∃∃{𝑥 ↦ sk⟨𝛼 ⟩𝑌𝑛}(𝑔) ∨ 𝐶𝑔 ≈ ℎ ∨ 𝐶
DC≈𝑔 ≉ ⊤⊤⊤∨ℎ ≈ ⊤⊤⊤ ∨ 𝐶 𝑔 ≈ ⊤⊤⊤∨ℎ ≉ ⊤⊤⊤ ∨ 𝐶

In DC≈ we require both 𝑔 and ℎ to be formulas and at least one of them not to be⊤⊤⊤. In
DC∀∀∀, 𝑌 is a fresh variable, and in DC∃∃∃, sk is a fresh symbol and 𝛼 and 𝑌𝑛 consists of all the
type and term variables occurring freely in ∃∃∃𝑥.𝑔. The rules described above are as given by
Ganzinger and Stuber (adapted to our setting), with the omission of rules for negative liter-
als (of the form 𝑓 ≉⊤⊤⊤), which are easy to derive and which can be found in their work [69].

Naive application of the DC rules can result in exponential blowup in problem size.
To avoid this, we rename formulas 𝑓 that have repeated occurrences by introducing predi-
cates p𝑋𝑛 replacing them, where 𝑋𝑛 consists of all free variables of 𝑓 . We keep the count
of all nonatomic formulas occurring as either side of a literal. Before applying the DC rules
on a clause 𝑓 ≈̇⊤⊤⊤ ∨ 𝐶 , we checkwhether the number of occurrences of 𝑓 exceeds the thresh-
old 𝑘. If it does, based on the polarity of the literal 𝑓 ≈̇⊤⊤⊤, we add the clause p𝑌𝑛 ≉⊤⊤⊤ ∨ 𝑓 ≈⊤⊤⊤
(if the literal is positive) or p𝑌𝑛 ≈⊤⊤⊤ ∨ 𝑓 ≉⊤⊤⊤ (if the literal is negative), where 𝑌𝑛 are all free
variables of 𝑓 and p is a fresh symbol. Then, we replace the clause 𝑓 ≈̇⊤⊤⊤ ∨ 𝐶 by p𝑌𝑛 ≈̇⊤⊤⊤ ∨ 𝐶 .

Before the number of occurrences of 𝑓 is checked, we first check (using a fast, incom-
plete matching algorithm, used for simplification and subsumption) if there is a formula 𝑔,
for which definition was already introduced, such that 𝜎(𝑔) = 𝑓 , for some substitution 𝜎 .
This check can have three outcomes. First, if the definition q𝑋𝑛 was already introduced
for 𝑔 with the same polarity as 𝑓 ≈̇⊤⊤⊤, then 𝑓 is replaced by 𝜎(q𝑋𝑛). Second, if the def-
inition was introduced, but with different polarity, we create the clause defining 𝑔 with
the missing polarity, and replace 𝑓 with 𝜎(q𝑋𝑛). Last, if there is no renamed formula 𝑔
generalizing 𝑓 , we check if the number of occurrences of 𝑓 exceeds the threshold 𝑘.

In addition to reusing names for formula definitions, we reuse the Skolem symbols in-
troduced by the DC∃∃∃ rule. When DC∃∃∃ is applied to 𝑓 = ∃∃∃𝑥.𝑓 ′, we check if there is a Skolem
sk⟨𝛼𝑚⟩𝑌𝑛 introduced for a formula 𝑔 = ∃∃∃𝑥.𝑔′, such that 𝜎(𝑔) = 𝑓 . If so, the symbol sk is
reused and ∃∃∃𝑥.𝑓 ′ is replaced by {𝑥 ↦ 𝜎(sk⟨𝛼𝑚⟩𝑌𝑛)}(𝑓 ′). Renaming and name reusing
techniques are inspired by the VCNF algorithm described by Reger et al. [137].

Rules CASES and CASESSIMP deal with Boolean terms, but we need to rely on extension-
ality reasoning to deal with 𝜆-abstractions whose bodies have type 𝑜. Using the observa-
tion that the formula ∀∀∀𝑥𝑛.𝑓 implies that 𝜆𝑥𝑛. 𝑓 is functional-extensionally equal to 𝜆𝑥𝑛.⊤⊤⊤
(and similarly, if ∀∀∀𝑥𝑛.¬¬¬𝑓 , then 𝜆𝑥𝑛. 𝑓 ≈≈≈ 𝜆𝑥𝑛.⊥⊥⊥), we designed the following rule (where 𝑥𝑛
consists of all loose bound variables of 𝑓):𝐶[𝜆𝑥𝑛. 𝑓] INTERPRET𝜆(∀∀∀𝑥𝑛.𝑓) ≉ ⊤⊤⊤ ∨ 𝐶[𝜆𝑥𝑛.⊤⊤⊤] (∀∀∀𝑥𝑛.¬¬¬𝑓) ≉ ⊤⊤⊤ ∨ 𝐶[𝜆𝑥𝑛.⊥⊥⊥]

5

100 Boolean Reasoning in a Higher-Order Superposition Prover

5.4 Alternative Approaches
An alternative to modifications of the prover needed to support the rules described above
is to treat Booleans as yet another theory. Since the theory of Booleans is finitely ax-
iomatizable, stating those axioms instead of creating special rules might seem appealing.
Another approach is to preprocess nested Booleans by hoisting them to the top level.

Axiomatization A simple axiomatization of the theory of Booleans is given by Bent-
kamp et al. [18]. Following their approach, we introduce the proxy type bool, which
corresponds to 𝑜, to the signature. We define proxy symbols t, f,not,and,or, impl,equiv,
forall,exists,choice, and eq which correspond to the homologous logical constants from
Sect. 5.2. In their type declarations, 𝑜 is replaced by bool.

To make this chapter self-contained we include the axioms from Bentkamp et al. [18].
Definitions of symbols are computational in nature: Symbols are characterized by their
behavior on t and f. This also reduces interferences between different axioms. The axioms
are listed as follows:

t ≉ f𝑋 ≈ t ∨ 𝑋 ≈ f
not t ≈ f
not f ≈ t

andt𝑋 ≈ 𝑋
andf𝑋 ≈ f

or t𝑋 ≈ t
or f𝑋 ≈ 𝑋
impl t𝑋 ≈ 𝑋
impl f𝑋 ≈ t𝑋 ≉ 𝑌 ∨ eq⟨𝛼⟩ 𝑋 𝑌 ≈ t𝑋 ≈ 𝑌 ∨ eq⟨𝛼⟩ 𝑋 𝑌 ≈ f

equiv𝑋 𝑌 ≈ and (impl𝑋 𝑌)(impl𝑌 𝑋)
forall⟨𝛼⟩(𝜆𝑥. t) ≈ t𝑌 ≈ (𝜆𝑥. t) ∨ forall⟨𝛼⟩ 𝑌 ≈ f

exists⟨𝛼⟩ 𝑌 ≈ not (forall⟨𝛼⟩ (𝜆𝑥.not (𝑌 𝑥)))𝑌 𝑋 ≈ f ∨ 𝑌 (choice⟨𝛼⟩𝑌) ≈ t

Preprocessing Booleans Kotelnikov et al. extended VCNF, Vampire’s algorithm for
clausification, to support nested Booleans [98]. As explained in Sect. 3.8, we extended
the clausification algorithm of Ehoh to support nested Booleans inspired by this VCNF
extension. Zipperposition and Ehoh share the same clausification algorithm, enabling
us to reuse the extension, with one notable difference: Unlike in Ehoh, not all nested
Booleans different from variables, ⊤⊤⊤ and⊥⊥⊥ are removed. Namely, Booleans that are below𝜆-abstraction and contain 𝜆-bound variables will not be preprocessed. They cannot be eas-
ily hoisted to the level of an atom in which they appear, since this process might leak any
variables bound in the context in which the nested Boolean appears. Similar preprocessing
techniques are used in other higher-order provers [174].

5.5 Examples
The TPTP library [157] contains thousands of higher-order benchmarks, many of them
hand-crafted to point out subtle interferences of functional and Boolean properties of
higher-order logic. In this section we discuss some problems from the TPTP library that
illustrate the advantages and disadvantages of our approach.

During most of the 2010s, the core calculus of the best performing higher-order prover
at CASCwas tableaux—a striking contrast from the first-order part of the competition dom-
inated by superposition-based provers. TPTP problem SET557^1might shed some light on
why tableaux-based provers excel on higher-order problems. This problem conjectures

5.5 Examples

5

101

that there is no surjection from a set to its power set:¬(∃∃∃𝑥.∀∀∀𝑦.∃∃∃𝑧.𝑥 𝑧 ≈ 𝑦)
After negating the conjecture and clausification this problem becomes sk1 (sk2 𝑌) ≈ 𝑌
where sk1 and sk2 are Skolem symbols. Then, the ARGCONG rule [18] which applies fresh
variable 𝑊 to both sides of the equation can be used, yielding clause 𝐶 = sk1 (sk2 𝑌)𝑊 ≈𝑌 𝑊 . Superposition-based higher-order theorem provers (such as Leo-III, Vampire, and
Zipperposition) split this clause into two clauses 𝐶1 = sk1 (sk2 𝑌)𝑊 ≉ ⊤ ∨ 𝑌 𝑊 ≈ ⊤ and𝐶2 = sk1 (sk2 𝑌)𝑊 ≈ ⊤ ∨ 𝑌 𝑊 ≉ ⊤. This clausification step makes the problem considerably
harder. Namely, the clause 𝐶 instantiated with the substitution {𝑌 ↦ 𝜆𝑥.¬¬¬(sk1 𝑥 𝑥),𝑊 ↦
sk2 (𝜆𝑥.¬¬¬(sk1 𝑥 𝑥))} yields the empty clause. However, if the original clause is split into
two as described above, Zipperposition will rely on the PI rule to instantiate 𝑌 with an
imitation of ¬¬¬ and on equality factoring to further instantiate this approximation. These
desired inferences need to be applied on both new clauses and represent only a fraction
of inferences that can be done with 𝐶1 and 𝐶2, reducing the chance of a successful proof
attempt. Rule BOOLER imitates the behavior of a tableaux prover: It essentially rewrites
the clause 𝐶 into¬¬¬(sk1 (sk2 𝑌)𝑊) ≉ 𝑌 𝑊 , which makes finding the necessary substitution
easy and does not require a clausification step.

Combining the rule (BOOL)ERwith dynamic clausification is very fruitful, as the bench-
mark SYO033^1 illustrates. This problem contains the single conjecture∃∃∃𝑥.∀∀∀𝑦.𝑥 𝑦 ↔↔↔ (∀∀∀𝑧.𝑦 𝑧)
The problem is easily solved if the variable 𝑥 is replaced with the constant ∀. Moreover, the
prover does not have to blindly guess this instantiation. Instead, pretending that bound
variables are free, it can obtain it by unifying 𝑋 𝑌 with ∀∀∀𝑌 (which is the 𝜂-short form
of ∀∀∀𝑧.𝑌 𝑧). However, when the problem is clausified, all quantifiers are removed. Then,
Zipperposition finds the proof only if an appropriate instantiation mode of PI is used, and
if both clauses resulting from clausifying the negated conjecture are appropriately instan-
tiated. In contrast, dynamic clausification derives the clause 𝑋 (sk𝑋) ≉ ∀(sk𝑋) from the
negated conjecture in three steps. Then, equality resolution results in an empty clause,
swiftly finishing the proof without any explosive inferences. This effect is even more pro-
nounced on problems SYO287^5 and SYO288^5, in which a critical proof step consists of
instantiating a variable with imitations of ∨∨∨ and ∧∧∧. In configurations that do not use dy-
namic clausification and BOOLER, Zipperposition times out in any reasonable time limit;
with those two options it solves these two problems in less than 100ms.

In some cases, it is better to preprocess the problem. For example, TPTP problem
SYO500^1.005 contains many nested Boolean terms:

f0 (f1 (f1 (f1 (f2 (f3 (f3 (f3 (f4 a))))))) ≈ f0 (f0 (f0 (f1 (f2 (f2 (f2 (f3 (f4 (f4 (f4 a)))))))))))
In this problem, all functions f𝑖 are of type 𝑜 → 𝑜, and constant a is of type 𝑜. FOOL un-
folding of nested Boolean terms will result in an exponential blowup in the problem size.
However, superposition-based theorem provers are well equipped for this issue: Their
clausification algorithms use smart simplifications and formula renaming tomitigate these
effects. Moreover, when the problem is preprocessed, the prover is aware of the problem

5

102 Boolean Reasoning in a Higher-Order Superposition Prover

a lo li

b 1646 1648 1640
bc 1644 1645 1644

Figure 5.1: Effect of the CASES(SIMP) rule on success rate

size before the proving process starts and can adjust its heuristics properly. E, Zipperposi-
tion, and Vampire, instructed to perform FOOL unfolding, solve the problem swiftly, using
their default modes. However, if the problem is not preprocessed, Zipperposition strug-
gles to prove it using CASES(SIMP), and due to the large number of (redundant) clauses it
creates, succeeds only if specific heuristic choices are made.

5.6 Evaluation
We performed an extensive evaluation to determine the usefulness of our approach. As
our benchmark set, we used all 2606 monomorphic theorems from the TPTP 7.2.0 library,
given in THF format. All of the experiments described in this section were performed on
StarExec [154] serverswith Intel Xeon E5-2609 0 CPUs clocked at 2.40 GHz. The evaluation
is separated in two parts that answer different questions: How useful are the new rules?
How does our approach compare with state-of-the-art higher-order provers?

Evaluation of the Rules For this part of the evaluation, we fixed a single well-perform-
ing Zipperposition configuration called base (b). Since we are testing a single configura-
tion, we used the CPU time limit of 15 s—roughly the time a single configuration is given
in Zipperposition’s portfolio mode when participating in CASC. Configuration b uses the
pragmatic variant pv21121 (Sect. 4.8) of the unification algorithm described in Chapter 4. It
enables the BOOLSIMP rule, the EC rule, the PI rule in Pragmatic mode with 𝑘 = 2, rules
ELIMLEIBNIZ and ELIMPREDVAR, the BOOLER rule, and the BOOLEF rules. To evaluate the
usefulness of all rules described above, we enabled, disabled, or changed the parameters
of a single rule, while keeping all other parameters of b intact. In figures that contain
sufficiently many different configurations, cells are of the form 𝑛(𝑚) where 𝑛 is the total
number of proved problems by a particular configuration and 𝑚 is the number of unique
problems that a given configuration solved, compared to the other configurations in the
same figure. Intersections of rows and columns denote the corresponding combination
of parameters. The result for the base configuration is written in italics; the best result is
written in bold.

First, we tested different parameters of the CASES and CASESSIMP rules. In Figure 5.1
we report the results. The columns correspond to three possible options to choose the
subterm on which the inference is performed: a stands for any eligible subterm, lo and
li stand for leftmost outermost and leftmost innermost subterms, respectively. The rows
correspond to two different rules: b is the base configuration, which uses CASESSIMP, and
bc swaps this rule for CASES. Although the margin is slim, the results show it is usually
preferable to select the leftmost-outermost subterm.

5.6 Evaluation

5

103

−PI b𝑝 b𝑓 b∧∧∧ b∨∨∨ b≈≈≈ b¬¬¬ b∀∀∀∃∃∃𝑘 = 1
1636

1648 1628 1637 1634 1630 1641 1637𝑘 = 2 1646 1629 1636 1631 1627 1638 1634𝑘 = 8 1643 1625 1633 1631 1623 1637 1635

Figure 5.2: Effect of the PI rule on success rate

−EL +EL−EPV 1584 (0) 1644 (0)+EPV 1612 (0) 1646 (0)

Figure 5.3: Effect of Leibniz equality elimination rules

−BEF +BEF−BER 1644 (2) 1643 (0)+BER 1645 (0) 1646 (0)

Figure 5.4: Effect of BOOLER and BOOLEF rules

Second, we evaluated all the modes of the PI rule with three values for parameter𝑘: 1, 2, and 8 (Figure 5.2). The columns denote, from left to right: disabling the PI rule,
Pragmatic mode, Full mode, and Imit⋆ modes with appropriate logical symbols. The rows
denote different values of 𝑘. The results show that different values for 𝑘 have a modest
impact on the success rate. The raw data reveal that when we focus our attention to config-
urations with 𝑘 = 2, mode Full can solve ten problems no other mode (including disabling
the PI rule) can. Modes Imit∧∧∧ and Pragmatic solve two problems whereas Imit∨∨∨ solves one
problem uniquely. This result suggests that, even though this is not evident from Figure
5.2, the sets of problems solved by different modes differ somewhat.

Figure 5.3 gives results of evaluating rules that treat Leibniz equality on the calculus
level: EL stands for ELIMLEIBNIZ, whereas EPV denotes ELIMPREDVAR; signs − and + de-
note that the corresponding rule is removed from or added to configuration b, respectively.
Disabling both rules severely lowers the success rate. The results suggest that including
ELIMLEIBNIZ is beneficial to performance.

Similarly, Figure 5.4 shows the merits of excluding (−) or including (+) BOOLER (BER)
and BOOLEF (BEF) rules. Our expectations were that inclusion of those two rules would
have a significant impact on the success rate. It turns out that, in practice, most of the
effects of these rules could be achieved using a combination of the PI rule and the rules of
the superposition calculus.

Combining BER and BEF rules with dynamic clausification is more useful: When rule
IC is replaced by rule DC, the success rate increases to 1660 problems, compared to 1646
problems solved by b. We also discovered that reasoning with choice is useful: When
rule CHOICE is enabled, the success rate increases to 1653. We determined that includ-
ing or excluding the conclusion 𝐷 of CHOICE, after it is simplified, makes no difference.
Counterintuitively, disabling the BOOLSIMP rule results in 1640 problems, which is only
6 problems short of configuration b. Disabling the ABS and INTERPRET𝜆 rules results in
solving 25 and 31 problems fewer, respectively. The raw data show that in total, using
configurations from Figure 5.1 to Figure 5.4, 1682 problems can be solved.

Last, we compared our approach to alternatives. Axiomatizing Booleans brings Zip-
perposition down to a grinding halt: only 1106 problems can be solved using this mode.

5

104 Boolean Reasoning in a Higher-Order Superposition Prover

CVC4 Leo-III Satallax Vampire Zipperposition

uncoop 1806 (5) 1627 (0) 2067 (0) 1924 (7) 1980 (0)
coop – 2085 (3) 2214 (9) – 2190 (17)

Figure 5.5: Comparison with other higher-order provers

On the other hand, preprocessing is fairly competitive: it solved only 8 problems fewer
than the b configuration.

Comparison with Other Higher-Order Provers We compared Zipperposition with
all higher-order theorem provers that took part in higher-order division of the 2019 edition
of CASC [160]: CVC4 1.8 prerelease [12], Leo-III 1.4 [153], Satallax 3.4 [39], and Vampire-
THF 4.4 [100]. In this part of the evaluation, Zipperposition used the portfolio mode that
runs configurations in different time slices. We set the CPU time limit to 180 s, the time
allotted to each prover at the 2019 edition of CASC.

Leo-III and Satallax are cooperative theorem provers—they periodically invoke first-
order provers to finish the proof attempt. Leo-III uses CVC4, E, and iProver [97] as back-
ends, and Satallax uses Ehoh as backend. Zipperposition can use Ehoh as backend as well.
To test how successful each calculus is, we ran the cooperative provers in two versions:
uncoop, which disables backends, and coop, which uses all supported backends.

In both uncooperative and cooperative mode, Satallax is the winner. Zipperposition
comes in close second, showing that our approach is a promising basis for further exten-
sions. Indeed, as is shown in Chapter 6, with fine-tuning of the heuristics and further
extensions to the calculus, this approach can outperform all other competitive provers
with a large margin.

5.7 Discussion
Our work is primarily motivated by the goal of closing the gap between higher-order
“hammer” or software verifier frontends and first-order backends. A considerable amount
of research effort has gone into making the translations of higher-order logic as efficient
as possible. Descriptions of hammers like HOLyHammer [89] and Sledgehammer [131]
for Isabelle contain details of these translations. Software verifiers Boogie [102] andWhy3
[33] use similar translations.

Established higher-order provers like Leo-III and Satallax have been optimized to per-
form well on TPTP; however, recent evaluations (including the one in Sect. 3.9) show that
on Sledgehammer problems they are outperformed by translations to first-order logic [12,
18]. Those two provers are built from the ground up as higher-order provers—treatment
of exclusively higher-order issues such as extensionality or choice is built into them often
using explosive rules. Those explosive rules might contribute to their suboptimal perfor-
mance on mostly first-order Sledgehammer problems.

In contrast, the approach taken in this thesis is to start with a first-order prover and
gradually extend it with higher-order features. The work performed in the context of the
Matryoshka project [28], in which I participated, resulted in adding support for 𝜆-free

5.8 Conclusion

5

105

higher-order logic with Booleans to E (Chapter 3) and veriT [12], and adding support for
Boolean-free higher-order logic to Zipperposition. Many authors of state-of-the-art first-
order provers have implemented some form of support for higher-order reasoning. This
is true both for SMT solvers, witnessed by the recent extension of CVC4 and veriT [12],
and for superposition provers, witnessed by the extension of Vampire [24]. All of those
approaches were arguably more focused on functional aspects of higher-order logic, such
as 𝜆-binders and function extensionality, than on Boolean aspects such as Boolean sub-
terms and Boolean extensionality. A notable exception is work by Kotelnikov et al. that
introduced support for Boolean subterms to first-order Vampire [98, 99].

The main merit of our approach is that it combines two successful complementary
approaches, 𝜆Sup and FOOL paramodulation, to support features of higher-order logic
that have not been combined before in a modular way. It is based on 𝜆Sup, a calculus that
generalizes the highly successful first-order superposition calculus. It incurs around 1% of
overhead on first-order problems compared with classic superposition [18].

5.8 Conclusion
We presented a pragmatic approach to support Booleans in a modern automatic prover for
clausal higher-order logic. Our approach combines previous research efforts that extended
first-order provers with complementary features of higher-order logic. It also proposes
some solutions for issues that emerge with this combination. The implementation shows
a clear improvement over previous techniques and a competitive performance.

What our work misses is an overview of heuristics that can be used to curb the ex-
plosion incurred by some of the rules described in this chapter. In the next chapter, we
explore exactly this topic.

6

107

6
Making Higher-Order Superposition

Work

Joint work with
Alexander Bentkamp, Jasmin Blanchette, Simon

Cruanes, Visa Nummelin, and Sophie Tourret

Superposition is among the most successful calculi for first-order logic. Its extension to higher-
order logic introduces new challenges such as infinitely branching inference rules, new pos-
sibilities such as reasoning about Booleans, and the need to curb the explosion of specific
higher-order rules. We describe techniques that address these issues and extensively evalu-
ate their implementation in the Zipperposition theorem prover. Largely thanks to their use,
Zipperposition won the THF division of the CASC competition in 2020 and 2021.

In this work I was the main designer of all presented techniques, with the exception of inference streams that
were designed by Alexander Bentkamp and Sophie Tourret. Alexander Bentkamp and Jasmin Blanchette also
discussed many of the techniques with me and suggested important updates. Visa Nummelin worked on the
implementation of FOOL preprocessing. Simon Cruanes is the original developer of Zipperposition and provided
us with invaluable knowledge.

6

108 Making Higher-Order Superposition Work

6.1 Introduction
The landscape of higher-order proving techniques based on the extension of efficient first-
order ones has expanded tremendously in the late 2010s and early 2020s. As mentioned
in Sect. 2.5.6, we have implemented three higher-order calculi—𝜆fSup, 𝜆Sup, and 𝑜𝜆Sup—
that extend first-order superposition in a graceful way. Bhayat and Reger also gracefully
extended superposition to higher-order logic using SKBCI combinators [25], resulting in
a calculus called combinatory superposition. Significant progress has been made on the
SMT front as well [11].

In 2019 we tested for the first time if the idea of gracefully extending first-order provers
to higher-order logic really improves the state of the art. We implemented 𝜆Sup [18] in
Zipperposition 1.5 with basic heuristics and rudimentary extensions of the calculus to
deal with Booleans. It finished third at that year’s THF division of CASC competition
[160], 12 percentage points behind the winner, the tableau prover Satallax 3.4 [39].

Studying the competition results, we found that higher-order tableaux have some ad-
vantages over higher-order superposition. To bridge the gap, we developed techniques
and heuristics that simulate tableaux in the context of saturation. We implemented them
in Zipperposition 2, which took part at the higher-order division of CASC [161] in 2020.
This time, our prover won the division, proving 84% of the problems, a whole 20 percent-
age points ahead of the runner-up, Satallax 3.4.

In this chapter, we describe the main techniques that explain this reversal of fortunes.
They cover most parts of a modern higher-order theorem prover, from preprocessing to
additional calculus rules to heuristics to backend integration. Compared to the previous
chapter, in which we discussed rules used to treat Boolean terms, in this chapter we use a
newer version of Zipperposition, based on a newer calculus. Instead of 𝜆Sup augmented
with ad hoc Boolean rules, we work with 𝑜𝜆Sup [17], a principled extension of superposi-
tion to full higher-order logic, including an interpreted Boolean type.

Many higher-order problems use symbol definitions extensively to decrease the ver-
bosity of representation. We describe several ways to exploit the definitions, such as turn-
ing them into rewrite rules (Sect. 6.3). By working on formulas rather than clauses, tableau
techniques take a more holistic view of a higher-order problem. Through its support for
delayed clausification and, more generally, calculus-level formula manipulation, 𝑜𝜆Sup en-
ables us to simulate most successful tableau techniques in a saturating prover (Sect. 6.4).
This calculus also supports Boolean selection functions, a mechanism that allows us to
choose which Boolean subterms to perform inferences on first. We implemented some
Boolean selection functions and evaluated them (Sect. 6.5).

The main implementation challenge of both 𝜆-superposition variants compared with
combinatory superposition is that they rely on rules that enumerate possibly infinite sets
of unifiers. We describe a mechanism that interleaves infinitely branching inferences with
the standard saturation process (Sect. 6.6). The prover retains the same behavior as before
on first-order problems, smoothly scalingwith increasing numbers of higher-order clauses.
We also propose heuristics to curb the explosion induced by highly prolific calculus rules
(Sect. 6.7).

Using first-order backends to finish the proof is common practice in higher-order rea-
soning. Since 𝑜𝜆Sup coincideswith standard superposition on first-order clauses, invoking
backends may seem redundant; yet Zipperposition is nowhere as efficient as E [147] or

6.2 Background and Setting

6

109

Vampire [100], so invoking a more efficient backend does make sense. We describe how
to achieve a balance between allowing native higher-order reasoning and delegating rea-
soning to a backend (Sect. 6.8). Finally, we compare Zipperposition 2 with other provers
on all monomorphic higher-order TPTP benchmarks [157] to perform a more extensive
evaluation than at CASC (Sect. 6.9). Our evaluation corroborates the competition results.

6.2 Background and Setting
We focus on monomorphic higher-order logic, defined in Sect. 2.3. However, the tech-
niques can easily be extended with rank-1 polymorphism [88]. Indeed, Zipperposition
already supports some of them polymorphically. Further, we use exactly the same nota-
tion for this logic and superposition calculus as introduced in Chapter 2. Since we are
working with extensions of superposition, we assume a clausal structure (Sect. 2.4). As
in the previous chapter, literals of clauses can contain arbitrary higher-order terms, in-
cluding formulas. At CASC, most theorem provers, including Zipperposition, are invoked
using a sequence of different configurations (possibly in parallel) until either the time limit
is reached or a proof is found. This sequence is usually called a portfolio.

Higher-Order Calculi We briefly introduced the 𝑜𝜆Sup calculus [17] in Sect. 2.5.6. It
is a refutationally complete inference system and redundancy criterion for higher-order
logic with rank-1 polymorphism, Hilbert choice, and functional and Boolean extensional-
ity. Unlike 𝜆Sup, this calculus does not require axioms defining the logical symbols to cope
with formulas. Instead, it includes Boolean inference rules that mimic superposition from
such axioms into Boolean subterms, while avoiding the explosion incurred by adding these
axioms to the proof state. It also includes rules that simulate Boolean inferences below
applied variables. Both sets of rules are disabled or replaced with incomplete, ad hoc rules
described in the previous chapter in most configurations of the CASC portfolio. A new
feature of the calculus that we explore in detail is the ability to select Boolean subterms
to restrict Boolean and superposition inferences.

In contrast to both 𝜆-superposition variants, combinatory superposition does not re-
quire enumerating elements of CSU to compute results of inferences. Instead, it avoids
computing CSUs by using a form of first-order unification. Essentially, it enumerates
higher-order terms using rules that instantiate applied variables with partially applied
combinators from the complete combinator set {S,K,B,C, I}. This calculus is the basis of
Vampire 4.5 [25], which finished closely behind Satallax 3.4 at the higher-order division
of CASC in 2020.

A different, very successful calculus is Satallax’s SAT-guided tableaux [9]. Satallax was
the leading higher-order prover of the 2010s. Its simple and elegant tableaux avoid deep
superposition-style rewriting inferences. Nevertheless, our working hypothesis for the
past years has been that superposition would likely provide a stronger basis for higher-
order reasoning. Other competing higher-order calculi include SMT (implemented in
CVC4 [11, 12]) and extensional paramodulation (implemented in Leo-III [153]).

Experimental Setup To assess our techniques, we carried out experiments with Zip-
perposition 2. We used two sets of benchmarks: all 2851 monomorphic higher-order prob-

6

110 Making Higher-Order Superposition Work

lems from the TPTP library [157] version 7.4.0 (labeled TPTP in the figures of this chapter)
and 1253 Sledgehammer-generated monomorphic higher-order problems (labeled SH). Al-
though some techniques support polymorphism, we uniformly used monomorphic bench-
marks.

We fixed a base configuration of Zipperposition parameters as a baseline for all compar-
isons. This is an incomplete, pragmatic configuration of 𝑜𝜆Sup using heuristics expected
to perform well on a wide range of problems. The set of parameters used for the base-
line configuration in this chapter differs from the one in the previous chapter. In each
experiment, we varied the parameters associated with a specific technique to evaluate it.
The experiments were run on StarExec Miami [154] servers, equipped with Intel Xeon E5-
2620 v4 CPUs clocked at 2.10 GHz. Unless otherwise stated, we used a CPU time limit of
15 s, roughly the time each configuration is given in the CASC portfolio mode. The raw
evaluation results are available online.¹

6.3 Preprocessing Higher-Order Problems
The TPTP library contains thousands of higher-order problems. Despite their diversity,
they have a markedly different flavor from the TPTP first-order problems. Notably, they
extensively use the definition role to identify universally quantified equations (and equiv-
alences) that define symbols. Definitions 𝑠 ≈ 𝑡 (or (𝑠 ↔↔↔ 𝑡) ≈ ⊤⊤⊤) can be replaced by rewrite
rules 𝑠 ⟶ 𝑡 , using the orientation given in the input problem. If there are multiple defini-
tions for the same symbol, only the first one is replaced by a rewrite rule. Then, whenever
a clause is picked in the given clause procedure, it is rewritten using the collected rules.
Alternatively, we can rewrite the input formulas as a preprocessing step. This ensures that
the input clauses will be fully simplified when the proving process starts and no defined
symbols will occur in clauses, which usually helps the heuristics.

Since the TPTP format enforces no constraints on definitions, rewriting might diverge.
To ensure termination, we limit the number of applied rewrite steps. In practice, most
TPTP problems are well behaved: Only one definition is given for each symbol, and the
definitions are acyclic.

Turning the defining equations into rewrite rules, unfolding the definitions, and 𝛽-
reducing the result can eliminate all of a problem’s higher-order features, making it sus-
ceptible to first-order methods. However, this can inflate the problem beyond recognition
and compromise the refutational completeness of superposition.

Example 6.1. Removing higher-order features of a problem can have adverse effects.
Consider the TPTP problem NUM636^3, which defines the predicate m as 𝜆𝑥.s𝑥 ≉≉≉ 𝑥 and
states its conjecture as ∀∀∀𝑥.m𝑥 , where s is the standard Peano-style natural number succes-
sor constructor. When this definition is kept as is, the prover can superpose from either m
or its definition into the (clausified) induction axiom, which is also given in the problem,
and quickly prove the conjecture, without using any advanced inductive reasoning. In
contrast, when the definition is unfolded and the problem is 𝛽-reduced, both m and the
corresponding 𝜆-abstraction disappear, forcing the prover to guess the correct instantia-
tion for the induction axiom.

¹http://doi.org/10.5281/zenodo.5007440

http://doi.org/10.5281/zenodo.5007440

6.3 Preprocessing Higher-Order Problems

6

111

We describe two techniques to mitigate these issues. The first one is based on the
observation that in practice, the explosion associated with definition unfolding mostly
manifests itself on definitions of nonpredicate symbols. In some cases, it is preferable to
rely on superposition’s term order and the powerful simplification engine to rewrite the
proof state rather than to blindly rewrite definitions. On the other hand, superposition’s
reasoning with equivalences is often inadequate [17, 69]. Thus, it makes sense to treat
only predicate definitions as rewrite rules.

The second technique aims at preserving completeness: We can try to choose the term
order that parameterizes superposition, as one that orients as many definitions as possible,
and rely on demodulation to simplify the proof state. Usually, an instance of the Knuth–
Bendix order (KBO) [95] is used. KBO compares terms by first comparing their weights,
which is the sum of all the weights assigned to the symbols it contains. Given a symbol
weight assignment 𝒲 , we can update it so that it orients acyclic definitions from left to
right assuming that they are of the form f𝑋𝑚 ≈ 𝜆𝑌𝑛. 𝑡 , where the only free variables in 𝑡
are 𝑋𝑚 , no free variable is repeated or appears applied in 𝑡 , and f does not occur in 𝑡 . Then
we traverse the symbols f that are defined by such equations following the dependency
relation, starting with a symbol f that does not depend on any other defined symbol. For
each f, we set 𝒲 (f) to 𝑤 +1, where 𝑤 is the maximum weight of the right-hand sides of
f’s definitions, computed using 𝒲 . By construction, for each equation the left-hand side
is heavier. Thus, the equations are orientable from left to right.

Example 6.2. Many of the problems in the TPTP library’s LCL category encode modal
logic in higher-order logic. More complex modal operators (such as implication and equiv-
alence) are defined in terms of basic connectives (such as negation and disjunction). Some
of the definitions present in the problems are mnot ∶= 𝜆𝑝 𝑥.¬¬¬ 𝑝 𝑥 , mor ∶= 𝜆𝑝 𝑞 𝑥.𝑝 𝑥 ∨∨∨ 𝑞 𝑥 ,
and mimplies ∶= 𝜆𝑝 𝑞.mor (mnot𝑝)𝑞. Assuming that the weight of 𝜆, bound variables, and
basic connectives is 2, we can orient equations using the approach above described as fol-
lows. Starting from symbols that do not depend on the other ones, we set 𝒲 (mnot) = 11
and 𝒲 (mor) = 17. Then, we use these values to set 𝒲 (mimplies) = 37. Clearly, these
weights enable us to orient all definitions from left to right.

Evaluation and Discussion We designed and evaluated the following strategies for
handling definition axioms:

pre-RW rewrite all definitions as a preprocessing step;

in-RW rewrite all definitions during the saturation, as an inprocessing step;𝑜-RW rewrite only predicate definitions, during preprocessing;𝑜-RW+KBO like 𝑜-RW but with adjusted KBO weights for the remaining definitions;

no-RW no special treatment of definitions;

no-RW+KBO like 𝑛𝑜-RW but adjusting KBO weights for all definitions.

The results are given in Figure 6.1. In all the figures in this chapter, each cell gives the
number of proved problems, and cells marked with ⋆ correspond to the base configuration.

6

112 Making Higher-Order Superposition Work

pre-RW in-RW 𝑜-RW 𝑜-RW+KBO no-RW no-RW+KBO
TPTP 1635⋆ 1619 1620 1621 1298 1296

Figure 6.1: Impact of the definition rewriting method

The highest number in a category is typeset in bold. SH benchmarks are not included
because they do not contain the definition role.

The four configurations in which definitions are treated as rewrite rules performmuch
better than the other two. In contrast, adjusting KBOweights gives no substantial improve-
ment: Looking at raw data, we found only two problems proved by 𝑜-RW+KBO but not
by 𝑜-RW in which the feature was used in the proof. For no-RW and no-RW+KBO, the
two-problem difference may just be noise. Even though it proves fewer problems, the con-
figuration 𝑜-RW has some advantages over pre-RW: It proves 16 problems that pre-RW
does not, three of which have a TPTP difficulty rating of 1. Difficulty rating is a number
from 0 to 1, proportional to the number of state-of-the-art provers that attempted, but
failed to solve to problem [162].

Rewriting after clausification avoids getting stuck in rewriting parts of the proof state
that might not contribute to the proof. In practice, we noticed that rewriting can be so
expensive that the prover can spend all allotted CPU time in the preprocessing phase. The
evaluation results confirm this observation: There are 64 problems proved by in-RW but
not by pre-RW. Moreover, there are 41 problems that can be proved only by in-RW but
not by any other above described configuration.

6.4 Reasoning about Formulas
Higher-order logic identifies formulas with terms of Boolean type. To prove a conjecture,
we often need to instantiate a variable with the right predicate. Finding this predicate
can be easier if the problem is not clausified. Consider the conjecture ∃∃∃𝑓 . 𝑓 pq ↔↔↔ p∧∧∧ q.
Expressed in this form, the formula is easy to prove by taking 𝑓 ∶= 𝜆𝑥 𝑦.𝑥 ∧∧∧𝑦 . By contrast,
guessing the right instantiation for the negated, clausified form ¬𝐹 pq ∨ ¬p ∨ ¬q, 𝐹 pq ≈⊤⊤⊤ ∨ p ≈⊤⊤⊤, 𝐹 pq ≈⊤⊤⊤ ∨ q ≈⊤⊤⊤ is more challenging. One of the strengths of higher-order tableau
provers is that they do not clausify the input problem. This might partly explain Satallax’s
dominance in the THF division of CASC competitions until the 2020 edition of CASC.

The 𝑜𝜆Sup calculus supports delayed clausification rules that insert the formulas of a
problem into the proof state in their original, nonclausified form, and clausify them gradu-
ally. Delayed clausification allows the prover to analyze the syntactic structure of formulas
during saturation, whereas the more traditional approach of immediate clausification ap-
plies a standard clausification algorithm [126] both as a preprocessing step and whenever
predicate variables are instantiated.

An earlier evaluation of the 𝑜𝜆Sup calculus [17] showed that the outer variant of de-
layed clausification substantially increases this calculus’s performance. The outer variant
clausifies top-level logical symbols, proceeding from the outside inwards; this method cor-
responds to the one described in the previous chapter. For example, a clause 𝐶 ∨ ¬(p∧∧∧q)
is transformed into 𝐶 ∨ ¬p ∨ ¬q. The calculus also supports inner delayed clausification,

6.4 Reasoning about Formulas

6

113

which does not enforce clausifying logical symbols in top-down direction, and uses only
the generating calculus rules to clausify problems. Even though this is the laziest approach
to clausification, the earlier evaluation [17] showed that this approach is inefficient. Thus,
we focus only on the outer rules.

Delayed clausification rules can be used as inference rules (which add conclusions to
the passive set) or as simplification rules (which delete premises and add conclusions to
the passive set). Inferences are more flexible, as all intermediate clausification states will
be stored in the proof state, at the cost of producing many clauses. Simplifications pro-
duce fewer clauses, but risk destroying informative syntactic structure. Since clausifying
equivalences can destroy a lot of syntactic structure [69], we never apply simplifying rules
on them.

Delayed clausification can interfere with clause splitting techniques. Zipperposition
supports a lightweight variant of AVATAR [167], an architecture that partitions the search
space by splitting clauses into variable-disjoint subclauses. This lightweight AVATAR is
described by Ebner et al. [58, Sect. 7]. Combining it with delayed clausification makes it
possible to split a clause (𝜑1 ∨∨∨⋯∨∨∨𝜑𝑛) ≈ ⊤⊤⊤, where the 𝜑𝑖 ’s are arbitrarily complex formulas
that share no free variables with each other, into clauses 𝜑𝑖 ≈ ⊤⊤⊤. To finish the proof, it suf-
fices to derive the empty clause under each assumption 𝜑𝑖 ≈⊤⊤⊤. Since the split is performed
at the formula level, this technique resembles tableaux, but it exploits the strengths of su-
perposition, such as its powerful redundancy criterion and simplification machinery, to
close the branches.

Beyond splitting, interleaving clausification and saturation allows us to simulate an-
other tableau-inspired technique. Whenever dynamic clausification substitutes a fresh
variable 𝑋 for a predicate variable 𝑥 in a clause of the form (∀∀∀𝑥.𝜑) ≈ ⊤⊤⊤ ∨ 𝐶 , yielding{𝑥 ↦ 𝑋}(𝜑) ≈ ⊤⊤⊤ ∨ 𝐶 , we can create additional clauses in which 𝑥 is replaced with 𝑡 ∈ Inst,
where Inst is a set of heuristically chosen terms. This set contains 𝜆-abstractions whose
bodies are formulas and that occur in activated clauses; it also contains primitive instanti-
ations—that is, imitations (in the sense of higher-order unification) of logical symbols that
approximate the shape of a predicate that can instantiate a predicate variable. Primitive
instantiations are described in Sect. 5.3.

Since a new term 𝑡 can be added to Inst after a clause with a quantified variable of 𝑡’s
type has been activated, we remember the clauses {𝑥 ↦𝑋}(𝜑) ≈⊤⊤⊤ ∨ 𝐶 and instantiate them
when Inst is extended. Conveniently, these instantiated clauses are not recognized as sub-
sumed by Zipperposition, which uses an optimized, incomplete higher-order subsumption
algorithm.

Given a disequation f 𝑠𝑛 ≉ f 𝑡𝑛 , the abstraction of 𝑠𝑖 is 𝜆𝑥.𝑢 ≈≈≈ 𝑣 , where 𝑢 is obtained by re-
placing all occurrences of 𝑠𝑖 in f 𝑠𝑛 with 𝑥 and 𝑣 is obtained by replacing all occurrences of 𝑠𝑖
in f 𝑡𝑛 with 𝑥 . For an equation f 𝑠𝑛 ≈ f 𝑡𝑛 , the analogous abstraction is 𝜆𝑥.¬¬¬(𝑢 ≈≈≈ 𝑣). Adding
abstractions of the literals occurring in the conjecture to Inst provides useful instantia-
tions for formulas such as induction principles of datatypes. As the conjecture is negated
in refutational theorem proving, the equation’s polarity is inverted in the abstraction.

Example 6.3. The clausified conjecture of the problem DAT056^2 [156] from the TPTP
library is apxs (apyszs) ≉ ap (apxsys)zs, where ap is the list append operator defined re-
cursively on its first argument and xs, ys, and zs are of list type. Abstracting xs from
the disequation yields 𝑡 = 𝜆xs.apxs (apyszs) ≈≈≈ ap (apxsys)zs, which is added to Inst. In-

6

114 Making Higher-Order Superposition Work

+LA −LA
TPTP IC 1616 1635⋆

DCI 1507 1532
DCS 1668 1703

SH IC 425 452⋆
DCI 362 385
DCS 441 457

Figure 6.2: Impact of clausification and lightweight AVATAR

cluded in the problem is the induction axiom for the list datatype: ∀∀∀𝑝.𝑝 nil∧∧∧ (∀∀∀𝑥 xs. 𝑝 xs→→→𝑝(cons𝑥 xs))→→→∀∀∀xs. 𝑝 xs, where nil and cons have the usual meanings. Instantiating 𝑝 with𝑡 and using the ap definition, we can prove ∀∀∀xs.apxs (apyszs) ≈≈≈ ap (apxsys)zs, fromwhich
we easily derive a contradiction.

Evaluation and Discussion The base configuration (base) uses immediate clausifica-
tion (IC) and disables lightweight AVATAR (−LA). To test the merits of delayed clausifi-
cation, we vary base’s parameters along two axes: We choose immediate clausification
(IC), delayed clausification as inference (DCI), or delayed clausification as simplification
(DCS), and we either enable (+LA) or disable (−LA) lightweight AVATAR. Neither of the
configurations uses instantiation with terms from Inst.

Figure 6.2 shows that using delayed clausification as simplification greatly increases
the success rate, regardless of whether lightweight AVATAR is used. Using delayed clausi-
fication as inference has the opposite effect on both problem sets, presumably due to the
large number of clauses it creates. By manually inspecting the proofs found by the DCS
configuration, we noticed that amain reason for its success is that it does not simplify away
equivalences. Overall, lightweight AVATAR harms performance, but the sets of problems
proved with and without it are vastly different. For example, the IC+LA configuration
proves 38 problems not proved by IC−LA (i.e., base) on TPTP benchmarks and 14 such
problems on SH benchmarks.

The Boolean instantiation technique presented above requires delayed clausification.
We assessed it in the best configuration from Figure 6.2, DCS−LA. With this change (+BI),
Zipperposition proves 1700 TPTP problems and 456 SH problems. On TPTP, even though+BI solves three problems fewer than DCS−LA, it is very useful: 41 problems can be
proved with +BI but not with DCS−LA. Conversely, 44 problems are solved with DCS−LA,
but not with +BI, which suggests that Boolean instantiation can be explosive. One of
the problems Boolean instantiation helps solve is NUM636^2 (a reencoding of NUM636^3,
which is discussed in Example 6.1). It conjectures that ∀∀∀𝑥.s𝑥 ≉≉≉ 𝑥 , where 𝑥 ranges over
Peano-style numbers specified by z and s. The given axioms are the induction principle∀∀∀𝑝.𝑝 z ∧∧∧ ∀∀∀𝑥. (𝑝 𝑥 →→→ 𝑝(s𝑥)) →→→ ∀∀∀𝑥.𝑝 𝑥 , injectivity ∀∀∀𝑥𝑦.s𝑥 ≈≈≈ s𝑦 →→→ 𝑥 ≈≈≈ 𝑦 , and distinctness∀∀∀𝑥.s𝑥 ≉≉≉ z. The conjecture is easily proved if Boolean instantiation is enabled: Even though
the conjecture literal cannot be abstracted, instantiating 𝑝 with the term 𝜆𝑥.s𝑥 ≉≉≉ 𝑥 used
in the encoding of the (nonclausified) conjecture leads to a proof in just 22 given clause

6.5 Exploring Boolean Selection Functions

6

115

loop iterations. Zipperposition also finds a proof using the DCI−LA configuration, but this
requires 294 iterations.

The +BI configuration proves 18 TPTP problems no other configuration from Figure 6.2
can prove. Among these is DAT056^2 (Example 6.3). In contrast, on SH benchmarks, only
six problems are proved using +BI and not DCS−LA. For all these problems, Boolean in-
stantiation does not appear in the proof, suggesting that this result is due to the random-
ness in the evaluation environment. The fact that BI has no effect on SH benchmarks is
to be expected because Sledgehammer deliberately tries to exclude induction rules from
the problem by excluding lemmas whose name contains the substring .induct and that
contain predicate variables. Therefore, BI applies to fewer clauses.

6.5 Exploring Boolean Selection Functions
As discussed in Sect. 2.5, superposition calculi are parameterized by a literal selection
function and a term order that help prune considerable swaths of the search space without
jeopardizing completeness. The core inferences apply only to a clause’s eligible literals,
defined as either the clause’s selected literals or, if none are selected, the clause’s literals
that are maximal with respect to the term order. To further restrict which terms can be
targeted by an inference, the 𝑜𝜆Sup calculus introduces Boolean selection functions.

A Boolean selection function chooses green subterms of Boolean type, which are dif-
ferent than ⊤⊤⊤ or ⊥⊥⊥ and do not occur at either side of a positive literal in a clause. It gives
rise to a notion of eligibility that considers the formula structure. We call terms that can
be selected selectable subterms. Green subterms correspond to the first-order skeleton of
a higher-order term; that is, they do not occur in positions under applied variables, quan-
tifiers, or 𝜆-abstractions.
Definition 6.4 (Green subterms and green positions). Green subterms and green posi-
tions are defined inductively as follows: 𝑡 is a green subterm of 𝑡 at green position 𝜀; if 𝑡
is a green subterm of 𝑢𝑖 at green position 𝑝 and f is a constant different from ∀∀∀ and ∃∃∃, then𝑡 is a green subterm of f𝑢𝑛 at green position 𝑖.𝑝, assuming 𝑖 ≤ 𝑛.
Example 6.5. The green subterms of the term 𝐹 a ∧∧∧ p (∀∀∀(𝜆𝑥.q𝑥))b are the term itself, 𝐹 a,
p (∀∀∀(𝜆𝑥.q𝑥))b, ∀∀∀(𝜆𝑥.q𝑥), and b.

Green positions are lifted to clauses as follows: If 𝑝 is the green position of a subterm
in 𝑠, and 𝑠 occurs in a literal 𝑙 ∈ {𝑠 ≈ 𝑡, 𝑠 ≉ 𝑡} of a clause 𝐶 , the green position of the same
subterm in 𝐶 is denoted by 𝑙.𝑠.𝑝. 𝑜𝜆Sup mandates additional restrictions on the Boolean
selection function: ⊤⊤⊤, ⊥⊥⊥, and variable-headed terms cannot be selected; for literals 𝑠 ≈ 𝑡 ,
neither 𝑠 nor 𝑡 can be selected; if 𝑠 (or 𝑡) contains a variable 𝑋 as a green subterm and𝑋 𝑢𝑛 , with 𝑛 ≥ 1, is a maximal term of 𝐶 , then 𝑠 (or 𝑡) cannot be selected.

Definition 6.6 (Eligibility). Given a substitution 𝜎 and term order ≻, we say a literal 𝑙 is
(strictly) eligible with respect to 𝜎 in 𝐶 if it is selected in 𝐶 or there are no selected literals
and no selected Boolean subterms in 𝐶 and 𝜎(𝑙) is (strictly) maximal in 𝜎(𝐶) with respect
to the term order. The eligible subterms of a clause 𝐶 with respect to a substitution 𝜎 are
inductively defined as follows: Any subterm selected by the Boolean selection function
is eligible. For a strictly eligible literal 𝑠 ≈ 𝑡 with 𝜎(𝑡) ⊁ 𝜎(𝑠), 𝑠 is eligible. For an eligible

6

116 Making Higher-Order Superposition Work

literal 𝑠 ≉ 𝑡 with 𝜎(𝑡) ⊁ 𝜎(𝑠), 𝑠 is eligible. If a subterm 𝑡 is eligible and the head of 𝑡 is
not ≈≈≈ or ≉≉≉, all green subterms directly below the head of 𝑡 are eligible. If a subterm 𝑡 is
eligible and 𝑡 is of the form 𝑢 ≈≈≈ 𝑣 or 𝑢 ≉≉≉ 𝑣 , then 𝑢 is eligible if 𝜎(𝑣) ⊁ 𝜎(𝑢) and 𝑣 is eligible
if 𝜎(𝑢) ⊁ 𝜎(𝑣).
Example 6.7. Consider a clause p ≈ ⊤⊤⊤ ∨ q (p∨∨∨ a ≈≈≈ b) ≈ ⊤⊤⊤, literal and Boolean selection
functions that select no literals and terms, respectively, and the precedence of symbols⊤⊤⊤ ≺ a ≺ b ≺ c ≺ p ≺ q. As no literals and subterms are selected, the second literal is eligible,
as it is maximal. This makes the term q (p∨∨∨ a ≈≈≈ b) eligible. Further, the green subterm
p∨∨∨ a ≈≈≈ b is eligible. Similarly, p and a ≈≈≈ b are eligible. Lastly, as a ≺ b, b is eligible.

The above definitions of green subterms and eligibility were originally introduced with𝑜𝜆Sup [17]. The Boolean selection function plays a similar role as the literal selection
function in standard superposition. Literal selection functions eliminate some of the non-
determinism present in the superposition calculus by focusing on selected parts of the
search space. Boolean selection functions achieve the same goal, but in a different context:
They eliminate nondeterminism that is not present in standard superposition, namely, the
choice of subformula on which the Boolean calculus rules are to be applied. As with literal
selection functions, selecting few (and smaller) subterms can give rise to fewer possible
inferences and reduce clause proliferation.

This notion of eligibility opens up possibilities for reasoning with formulas that are
hard to simulate with the existing superposition machinery. For example, given a formula𝜑 →→→ 𝜓 , selecting the antecedent simulates forward reasoning, whereas selecting the con-
sequent simulates backward reasoning. This concept of eligibility also makes it possible to
restrict the proof search to a small, promising part of a formula. Note that literal selection
can override Boolean selection: Selecting a literal might make some of its green subterms
eligible, regardless of Boolean selection.

In our previouswork [127], we left this area of newpossibilities largely unexplored. We
designed simple functions that selected smallest, largest, innermost, or outermost terms,
but they did not impact performance much. A similar idea has been discussed in the
context of the CASES(SIMP) rule in Sect. 5.3. Here, we propose alternatives. Intuitively,
a well-performing literal selection function might succeed at taming the combinatorial
explosion if the selected literal can take part in few inferences [78]. However, Boolean
selection functions introduce another factor to consider: the context in which the selected
subterm occurs. This suggests the following definition:
Definition 6.8 (Contextualized Boolean selection function). Let ctx(𝐶) be a function that
maps a clause 𝐶 to a set of green positions 𝑝 such that 𝐶|𝑝 is a selectable Boolean subterm,
and let ⊳ be a partial order on pairs of terms and green positions. The context Boolean
selection function Sel⊳ctx(𝐶) selects all terms 𝑡 such that 𝑡 = 𝐶|𝑝 , 𝑝 ∈ ctx(𝐶), and (𝑡,𝑝) is
maximal with respect to ⊳, compared with all other pairs (𝐶|𝑝′ ,𝑝′), 𝑝′ ≠ 𝑝, and 𝑝 ∈ ctx(𝐶).

In the above definition, the function ctx lets us choose the context in which the Boolean
subterm appears. Then, among the terms in the chosen context, we choose the ones that
are maximal with respect to ⊳.

Ganzinger and Stuber considered Boolean subterm selection for their extension of first-
order superposition with interpreted Boolean type [69]. Unlike our calculus, their calculus
only allows the selection of subterms that occur in negative green positions, defined below.

6.5 Exploring Boolean Selection Functions

6

117

Definition 6.9 (Polarity of green positions). Negative and positive green positions in a
clause 𝐶 = 𝑙1 ∨ ⋯ ∨ 𝑙𝑛 are defined inductively as follows: For each 1 ≤ 𝑖 ≤ 𝑛, the green
position 𝑙𝑖 .𝑠 is positive if 𝑙𝑖 = 𝑠 ≈ ⊤⊤⊤ and negative if 𝑙𝑖 = ¬𝑠. If 𝑝 is positive (negative) and𝐶|𝑝 = 𝑠 𝑡𝑛 where 𝑠 is either∧∧∧ or∨∨∨, then each 𝑝.𝑖, 1 ≤ 𝑖 ≤ 𝑛, is positive (negative). If 𝑝 is positive
and 𝐶|𝑝 = ¬¬¬ 𝑠, then 𝑝.1 is negative; if 𝑝 is negative and 𝐶|𝑝 = ¬¬¬ 𝑠, then 𝑝.1 is positive. If𝑝 is positive and 𝐶|𝑝 = 𝑠 →→→ 𝑡 , then 𝑝.1 is negative and 𝑝.2 is positive; if 𝑝 is negative and𝐶|𝑝 = 𝑠 →→→ 𝑡 , then 𝑝.1 is positive and 𝑝.2 is negative.

Note that the polarity of 𝑝 is undefined whenever 𝐶|𝑝 is not a green Boolean subterm
or it occurs under a (dis)equivalence or an uninterpreted symbol. To assess how the func-
tion ctx affects performance, we use the following selection functions that consider green
positions of selectable Boolean terms:

Any select all green positions;
Pos select all positive green positions;
Neg select all negative green positions;
Forward select all green positions 𝑝 = 𝑞.1 such that 𝐶|𝑞 = 𝑠 →→→ 𝑡 ;
Backward select all green positions 𝑝 = 𝑞.2 such that 𝐶|𝑞 = 𝑠 →→→ 𝑡 ;
Deep select all green positions of maximal length;
Shallow select all green positions of minimal length.

We also introduce three partial orders for selecting subterms from a given context. For
all three orders, if exactly one of the subterms has a logical head, then the subterm with
the nonlogical head is larger, because logical symbols are more explosive. Otherwise, the
orders use the following criteria:⊳ground If exactly one of the subterms is ground, make the ground subterm

larger; otherwise, if exactly one of the subterms is of the form 𝑠 ≈≈≈ 𝑡 ,
make this subterm larger.⊳depth If one of the subterms has larger subterm depth (longest valid green
subterm position), make this subterm larger; otherwise, if one of the
subterms has fewer distinct variables, make this subterm larger.⊳def If exactly one of the subterms is of the form p𝑋𝑛 where 𝑋𝑛 is a tuple of
free variables, make the other subterm larger; otherwise, if exactly one
of the subterms is of the form 𝑋 𝑠𝑛 , make the other subterm larger.

In case of a tie, the subterm with the smaller syntactic weight is made larger, and if
both subterms have the same weight, the term that occurs in a position further to the left
(i.e., that has a lexicographically smaller position) is made larger.

These orders follow the design principle enunciated by Hoder et al. [78] that ground or
deep terms and terms with repeated variables are “less unifiable” with the similar observa-
tion for higher-order logic that reasoning about interpreted symbols or applied variables
is usually explosive.

Example 6.10. Selecting the right Boolean subterm can help avoid elaborating higher-
order inferences. Consider the unsatisfiable clause set consisting of p (𝜆𝑦.𝑋 (𝜆𝑥.𝑥)a)→→→¬¬¬(p (𝜆𝑦.𝑋 𝑦 a)) ≈ ⊤⊤⊤, p (𝜆𝑦.a) ≈ ⊤⊤⊤, and p (𝜆𝑦.𝑦100 b) ≈ ⊤⊤⊤, where superscript 𝑖 denotes 𝑖-fold
application of a unary term. Note that p (𝜆𝑦.𝑋 (𝜆𝑥.𝑥)a) and p (𝜆𝑦.a) have infinitely many
unifiers of the form {𝑋 ↦ 𝜆𝑓 𝑥.𝑓 𝑖 (𝑥)}, 𝑖 ≥ 0, whereas terms p (𝜆𝑦.𝑋 𝑦 a) and p (𝜆𝑦.𝑦100 b)

6

118 Making Higher-Order Superposition Work

Any Pos Neg Forward Backward Deep Shallow

TPTP ⊳ground 1538 1550 1547 1534 1554 1539 1538⊳depth 1542 1550 1528 1542 1550 1547 1535⊳def 1543 1551 1540 1540 1551 1545 1537

SH ⊳ground 386 379 386 386 379 387 387⊳depth 377 376 384 378 376 379 376⊳def 379 374 387 379 380 377 381

Figure 6.3: Impact of the Boolean selection function

have a finite CSU (in fact an MGU). When Forward context selection is enabled, the target
of superposition inference becomes p (𝜆𝑦.𝑋 (𝜆𝑥.𝑥)a), forcing computation of at least 100
unifiers (under the assumption that unifiers are returned in order of increasing 𝑖) before
we get to refute ¬¬¬(p (𝜆𝑦.𝑦100 b)). In contrast, Backward context selection allows us to
superpose from p (𝜆𝑦.𝑦100 b) into p (𝜆𝑦.𝑋 𝑦 a), avoiding this explosion.

Evaluation and Discussion When the input problem is clausified using immediate
clausification, almost all Boolean structure is lost. In this case, we expect Boolean se-
lection to have a modest effect. To better assess this feature, in this evaluation we use
DCI−LA from Sect. 6.4 as the baseline configuration. To avoid interference of literal and
Boolean selection, we additionally forbid the literal selection function from selecting a
literal if it contains a selectable Boolean subterm.

The results of evaluating 21 concrete selection functions obtained by instantiating the
contextualized Boolean selection function are shown in Figure 6.3. Rows denote the partial
order ⊳ which is used, while columns denote the function ctx.

On TPTP benchmarks, Boolean selection helps tame the explosion caused by dynamic
clausification used as inference: All but one selection functions outperform the DCI−LA
baseline of 1532 proved problems. Coming back to the problem NUM636^2 from Sect. 6.4, us-
ing Boolean selection can reduce the number of given clause loop iterations from 294 to 71.

The results suggest that selection of term context has more impact than the partial
term order. Also, the best results are obtained when a context more specific than Any is
chosen. Remarkably, functions using the Pos context perform better than the ones using
the Neg context on TPTP, but the opposite is observed on SH.

Using different Boolean selection functions yields vastly different sets of proved prob-
lems on TPTP benchmarks: In total, there are 103 problems proved by some configuration
from Figure 6.3 but not byDCI−LA. However, there are only 16 such SH problems. It would
seem that the advanced formula reasoning facilitated by the Boolean selection formulas
is usually not required by Sledgehammer problems.

6.6 Enumerating Infinitely Branching Inferences
As an optimization and to simplify the code, Leo-III [151] and Vampire 4.4 [24] (which uses
restricted combinatory unification, a predecessor of combinatory superposition) compute

6.6 Enumerating Infinitely Branching Inferences

6

119

only a finite subset of the possible conclusions of inferences that require enumerating a
CSU. Not only is this a source of incompleteness, but choosing the cardinality of the com-
puted subset is a difficult heuristic choice. Small sets can result in missing the necessary
unifier, while large sets make the prover spend too long in the unification procedure, gen-
erate useless clauses, and possibly get sidetracked into wrong parts of the search space.

We propose a modification to the given clause procedure to seamlessly interleave uni-
fier computation and proof state exploration. Given a complete unification procedure,
which may yield infinite streams of unifiers, our modification fairly enumerates all con-
clusions of inferences relying on elements of a CSU. Under some reasonable assumptions,
it behaves exactly like the standard given clause procedure on purely first-order problems.
We also describe heuristics that help achieve a similar performance as when using incom-
plete, terminating unification procedures without sacrificing completeness.

Given that we cannot decide whether there exists a next CSU element in a stream of
unifiers, a request for the next conclusion might not terminate, effectively bringing the
theorem prover to a halt. Our modified given clause procedure expects the unification
procedure to return a lazily computed stream [129, Sect. 4.2], where each element is either∅ or a singleton set containing a unifier. To avoid getting stuck waiting for a unifier that
may not exist, the unification procedure should return ∅ after it performs some number
of operations without finding a unifier.

The complete unification procedure described in Chapter 4 returns such a stream.
Other procedures, such as Huet’s [82] and Jensen and Pietrzykowski’s [86], can easily
be adapted to meet this requirement. Based on the stream of unifiers interspersed with ∅,
we can construct a stream of inferences similarly interspersed with ∅. Any finite prefixes
of this stream can be computed in finite time.

To support such streams in the given clause procedure, we extend it to represent the
proof state not only by the active (𝒜) and passive (𝒫) clause sets, but also by a priority
queue 𝒬 containing the inference streams, similar to the “to do” set 𝑇 present in the ab-
stract Zipperposition loop of Waldmann et al. [171, Sect. 4]. Each stream is given a weight,
and 𝒬 is sorted in order of increasing weight, a low weight corresponding to a high prior-
ity. When they introduced 𝜆Sup, Bentkamp et al. [18] described an older version of this
extension. Here we present a newer version in more detail, including heuristics to post-
pone unpromising streams. The pseudocode of the modified procedure is as follows:
function EXTRACTCLAUSE(𝑄, stream)

maybe_clause ← pop and compute the first element of stream
if stream is not empty then

add stream to 𝑄 with an increased weight
return maybe_clause

function FAIRPROBE(𝑄, num_oldest)
collected_clauses ← ∅
oldest_streams ← pop num_oldest oldest streams from 𝑄
for stream in oldest_streams do

collected_clauses ← collected_clauses ∪ EXTRACTCLAUSE(𝑄, stream)
return collected_clauses

6

120 Making Higher-Order Superposition Work

function HEURISTICPROBE(𝑄)
i ← 0
collected_clauses ← ∅
while 𝑖 < 𝐾best and 𝑄 ≠ ∅ do

j ← 0
maybe_clause ← ∅
while 𝑗 < 𝐾retry and 𝑄 ≠ ∅ and maybe_clause = ∅ do

stream ← pop the lowest-weight stream in 𝑄
maybe_clause ← EXTRACTCLAUSE(𝑄, stream)
j ← 𝑗 +1

collected_clauses ← collected_clauses ∪ maybe_clause
i ← 𝑖+1

return collected_clauses
function FORCEPROBE(𝑄)

collected_clauses ← ∅
while 𝑄 ≠ ∅ and collected_clauses = ∅ do

collected_clauses ← FAIRPROBE(𝑄, |𝑄|)
if 𝑄 = ∅ and collected_clauses = ∅ then

status ← Satisfiable
else

status ← Unknown
return (status,collected_clauses)

function GIVENCLAUSE(𝑃 , 𝐴, 𝑄)
i ← 0
status ← Unknown
while status = Unknown do
if 𝑃 = ∅ then(status, forced_clauses) ← FORCEPROBE(𝑄)

P ← 𝑃 ∪ forced_clauses
else

given ← pop a chosen clause from 𝑃 and simplify it
if given is the empty clause then

status ← Unsatisfiable
else

A ← 𝐴 ∪ {given}
for stream in streams of inferences between given and other ∈ 𝐴 do
if stream is not empty then

P ← 𝑃 ∪ EXTRACTCLAUSE(Q, stream)
i ← 𝑖+1
if 𝑖 mod 𝐾fair = 0 then

P ← 𝑃 ∪ FAIRPROBE(𝑄, 𝑖/𝐾fair)
else

P ← 𝑃 ∪ HEURISTICPROBE(𝑄)
return status

6.6 Enumerating Infinitely Branching Inferences

6

121

The entry point of the above pseudocode is the function GIVENCLAUSE, called with
arguments (𝒫 ,𝒜 ,𝒬), which are initialized as usual: All input clauses are put into 𝒫 , and𝒜 and 𝒬 are empty. In other words, the parameters 𝑃,𝐴, and 𝑄 intuitively correspond to𝒫 ,𝒜 , and 𝒬. Unlike in the standard given clause procedure, inference results are repre-
sented as clause streams. The first element is inserted into 𝑃 , and the rest of the stream is
stored in 𝑄 with some positive integer weight computed from the inference rule.

To eventually consider inference conclusions from streams in 𝑄 as given clauses, we
extract elements from, or probe, streams andmove any obtained clauses to 𝑃 . Analogous to
the traditional pick–given ratio [116, 143], we use a parameter 𝐾fair (by default, 𝐾fair = 70)
to ensure fairness: Every 𝐾fairth iteration, FAIRPROBE probes an increasing number of old-
est streams, which achieves dovetailing. In all other iterations, HEURISTICPROBE attempts
to extract up to 𝐾best clauses from the most promising streams (by default, 𝐾best = 7). In
each attempt, the most promising stream in 𝑄 is chosen. If its first element is ∅, the rest of
the stream is inserted into𝑄 and a new stream is chosen. This is repeated until either𝐾retry
occurrences of ∅ have been met (by default, 𝐾retry = 20) or the stream yields a singleton.
Setting𝐾retry > 0 increases the chance that HEURISTICPROBEwill return𝐾best clauses, as de-
sired. Finally, if 𝑃 becomes empty, FORCEPROBE searches relentlessly for a clause in 𝑄, as a
fallback. The default values for 𝐾fair,𝐾best, and 𝐾retry are chosen by informal experiments.

The function EXTRACTCLAUSE extracts an element from a nonempty stream not in 𝑄
and inserts the remaining stream into 𝑄 with an increased weight, calculated as follows.
Let 𝑛 be the number of times the stream was chosen for probing. If probing results in ∅,
the stream’s weight is increased by max {2, 𝑛 −16}. If probing results in a clause 𝐶 whose
penalty is 𝑝, the stream’s weight is increased by 𝑝 ⋅max {1, 𝑛−64}. The penalty of a clause is
a number assigned by Zipperposition based on features such as the depth of its derivation
and the rules used in it. The constants 16 and 64 increase the chance that newer clause-
producing streams are picked, which is desirable because their first clauses are expected
to be useful.

All three probing functions are invoked by GIVENCLAUSE, which contains the satura-
tion loop. It differs from the standard given clause procedure in threeways: First, the proof
state includes 𝑄 in addition to 𝑃 and 𝐴. Second, new inferences involving the given clause
are added to 𝑄 instead of being performed immediately. Third, a number of inferences in𝑄 are periodically computed to fill 𝑃 .
Example 6.11. In this example we simplify the notation by writing positive predicate
literals 𝑠 ≈⊤⊤⊤ as 𝑠 and negative predicate literals 𝑡 ≉⊤⊤⊤ as ¬𝑡 . Consider the unsatisfiable two-
clause problem {𝑋 (fa) ≉ f (𝑋 a) ∨p (𝑋 a),¬p (f100 a)} and a selection function which selects
negative literals. Let 𝑃 ∣ 𝐴 ∣ 𝑄 denote the state of the given clause loop (i.e., the contents
of the passive and active set and of the stream queue), and let [𝑎1,𝑎2,…] denote an infinite
stream of elements.

The given clause loop begins in the state 𝑋 (fa) ≉ f (𝑋 a) ∨ p (𝑋 a),¬p (f100 a) ∣ ∅ ∣ ∅. If
the clause ¬p (f100 a) is chosen for processing, since 𝑄 is empty and no inferences with the
chosen clause are possible, the state becomes 𝑋 (fa) ≉ f (𝑋 a)∨p (𝑋 a) ∣ ¬p (f100 a) ∣ ∅. When
the clause 𝑋 (fa) ≉ f (𝑋 a) ∨ p (𝑋 a) is chosen, a new stream which enumerates results of
equality resolution (on its first literal) is created. There are infinitely many conclusions
of this inference, since there are infinitely many unifiers for the first literal of the form{𝑋 ↦𝜆𝑥. f𝑖 𝑥}, for 𝑖 ≥ 0. Thus, the stream is [{pa}, {p (fa)},…], possibly with ∅s interspersed.

6

122 Making Higher-Order Superposition Work

With the standard given clause procedure, there would have been no way to represent this
infinitary result.

When the stream is created, its first element is popped and put into 𝑃 . Then, based on
the parameters that control inference stream probing, some number of clauses from the
stream are computed and moved to 𝑃 . After two iterations, the state might be pa,p (fa),
p (f (fa)) ∣ 𝑋 (fa) ≉ f (𝑋 a) ∨p (𝑋 a),¬p (f100 a) ∣ [{p (f3 a)},…].

In the next iterations, some clause of the form p (f𝑖 a), where 𝑖 < 100, is chosen, but no
inferences with it can be performed. Then, the stream created in the second iteration is
probed, and its results fill the set 𝑃 . Ultimately, the clause p (f100 a) is chosen, at which
point ⊥ is quickly derived.

GIVENCLAUSE eagerly stores the first element of a new inference stream in 𝑃 to imitate
the standard given clause procedure. If the underlying unification procedure behaves like
the standard first-order unification algorithm on higher-order logic’s first-order fragment,
our given clause procedure coincides with the standard one. The unification procedure
described in Chapter 4 terminates on the first-order and other fragments. To avoid com-
puting complicated unifiers eagerly, it immediately returns ∅ for a problem that does not
belong to one of the fragments that admit efficient unifier computation.

The design of our given clause procedure was guided by folklore knowledge about
higher-order theorem proving. First, in our experience most steps in long higher-order
proofs involve first-order literals. The unification procedure and inference scheduling en-
sure that first-order inference conclusions are put in the proof state as early as possible.
Second, some inference rules are expected to be largely useless. We initialize the stream
penalty differently for each rule, allowing old streams of more useful inferences to be
queried before newly added, but potentially less useful streams. Finally, if we use a unifi-
cation procedure that has aggressive redundancy elimination, we will often find the nec-
essary unifier within the first few unifiers returned. Similarly, if a stream keeps returning∅, it is likely that it is blocked in a nonterminating computation and should be ignored.
Our heuristics to increase the stream penalties take these observations into account.

Evaluation and Discussion The evaluation of our unification algorithm in Sect. 4.8
shows that Zipperposition is the only competing higher-order prover that proves all
Church numeral problems from the TPTP, never spending more than 5 s on a problem.
On these hard unification problems, the stream system allows the prover to explore the
proof state lazily.

Consider the TPTP problem NUM800^1, which requires finding a function 𝐹 such that𝐹 c1 c2 ≈≈≈ c2 ∧∧∧ 𝐹 c2 c3 ≈≈≈ c6, where c𝑛 abbreviates the Church numeral for 𝑛, 𝜆𝑠 𝑧. 𝑠𝑛 𝑧. To
prove the problem, it suffices to take 𝐹 to be the multiplication operator 𝜆𝑥 𝑦 𝑠 𝑧. 𝑥 (𝑦 𝑠)𝑧.
However, this unifier is only one out of many available for each occurrence of 𝐹 .

To evaluate our unification algorithm (using a somewhat different evaluation setup
and an older version of Zipperposition), we also compared a complete, nonterminating
variant of the unification procedure and a pragmatic, terminating variant. The pragmatic
variant was used directly—all the inference conclusions were put immediately in 𝑃 , bypass-
ing 𝑄. The complete variant, which relies on possibly infinite streams and is much more
prolific, proved only 15 problems fewer than the most competitive pragmatic variant. Fur-
thermore, it proved 19 problems not proved by the pragmatic variant. This shows that our

6.7 Controlling Prolific Rules

6

123

given clause procedure, with its heuristics, allows the prover to defer exploring less promis-
ing branches of the unification and uses the full power of a complete higher-order unifier
search to solve unification problems that cannot be proved by a restricted procedure.

The parameters 𝐾fair, 𝐾retry, and 𝐾best can greatly influence the behavior of the given
clause procedure, even when the same unification procedure is used. Figure 6.4 presents
the effects of these parameters on TPTP and SH. Selecting a low number of best clauses
seems to perform well on both benchmark sets. However, on SH benchmarks, which
mostly require first-order unifiers, visiting older streams should be delayed a lot.

Aswith Boolean selection functions, changing these three parameters causes a substan-
tial difference in the set of proved problems. For example, the configuration that performs
the worst on TPTP benchmarks proves 12 problems that the configuration performing the
best on TPTP cannot prove; moreover, there are 29 TPTP problems that are proved by
some set of parameters other than 𝐾fair = 𝐾best = 16,𝐾retry = 2. On SH, these effects are
much weaker; most reasonable combinations of parameters perform similarly.

Among the competing higher-order provers, only Satallax uses infinitely branching
calculus rules. It maintains a queue of “commands” that contain instructions on how to
create a successor state in the tableau. One command describes an infinite enumeration of
all closed terms of a given function type. Each execution of this command makes progress
in the enumeration. In contrast to computing inferences using streams representing ele-
ments of CSU, each command execution is guaranteed to make progress in enumerating
the next closed functional term, so there is no need to ever return ∅.
6.7 Controlling Prolific Rules
To support higher-order features such as function extensionality and quantification over
functions, many refutationally complete calculi employ highly prolific rules. For example,𝜆Sup includes a FLUIDSUP rule [18] that very often applies to two clauses if one of them
contains a term of the form 𝐹 𝑠𝑛 , where 𝑛 > 0. This rule is inherited in the successor of the
calculus, 𝑜𝜆Sup, that we use in this chapter. We describe three mechanisms to keep rules
like these under control.

First, we limit applicability of the prolific rules. In practice, it often suffices to apply pro-
lific higher-order rules only to initial or shallow clauses—clauses with a shallow derivation
depth. Thus, we added an option to forbid the application of a rule if the derivation depth
of any premise exceeds a limit.

Second, we penalize the streams of expensive inferences. The weight of each stream
is given an initial value based on characteristics of the inference premises such as their
derivation depth. For prolific rules such as FLUIDSUP, we increment this value by a param-
eter 𝐾incr. Weights for less prolific variants of this rule, such as DUPSUP [18], are increased
by a fraction of 𝐾incr (e.g., ⌊𝐾incr/3⌋).

Third, we defer the selection of prolific clauses. To select the given clause, most satu-
rating provers evaluate clauses according to some criteria and choose the clause with the
lowest evaluation. To make this choice efficient, passive clauses are organized into a prior-
ity queue ordered by their evaluations. Like E, Zipperposition maintains multiple queues,
ordered by different evaluations, that are visited in a round-robin fashion. It also uses E’s
two-layered evaluation, a variant of which has recently been implemented in Vampire [70].
The two layers are clause priority and clause weight. Clauses with higher priority are pre-

6

124 Making Higher-Order Superposition Work

𝐾fair
2 16 128𝐾retry 𝐾retry 𝐾retry

2 16 128 2 16 128 2 16 1282 1643 1645 1645 1661 1661 1658 1669 1664 1664𝐾best 16 1647 1646 1609 1670 1654 1602 1665 1659 1597128 1646 1644 1583 1661 1656 1577 1665 1658 1576
(a) TPTP benchmarks𝐾fair

2 16 128𝐾retry 𝐾retry 𝐾retry
2 16 128 2 16 128 2 16 1282 460 455 454 465 463 458 466 461 461𝐾best 16 458 453 445 464 459 441 468 459 442128 456 452 430 465 458 428 468 459 425

(b) SH benchmarks

Figure 6.4: Impact of the stream enumeration parameter

6.7 Controlling Prolific Rules

6

125

ferred, and the weight is used for tie-breaking. Intuitively, the first layer crudely separates
clauses into priority classes, while the second one uses heuristic weights to prefer clauses
within a priority class. To control the selection of prolific clauses, we introduce new clause
priority functions that take into account features specific to higher-order clauses.

The first new priority function, PreferHOSteps (PHOS), assigns a higher priority if rules
specific to higher-order superposition calculi were used in the clause derivation. Since
most of the other clause priority functions tend to defer higher-order clauses, having a
clause queue that prefers them might be useful to find some proof more efficiently. A
simpler function, which prefers clauses containing 𝜆-abstractions, is PreferLambda (PL).

PreferHOSteps separates clauses created using first- and higher-order inference rules
crudely. However, within higher-order inference rules there are the ones which make
clauses simpler and are thus more preferable. An example of such a rule is𝐶 ∨ 𝑠 ≈ 𝑡

ARGCONG𝐶 ∨ 𝑠𝑋𝑛 ≈ 𝑡 𝑋𝑛
where 𝑠 is of the type 𝛼1 →⋯→𝛼𝑘 →𝛽 , 𝛽 is a base type, 𝑛 ≤ 𝑘, free variables 𝑋𝑛 are fresh,
and literal 𝑠 ≈ 𝑡 is strictly eligible (for paramodulation). When 𝑛 = 𝑘, in most cases, the
resulting clause has a first-order literal 𝑠 𝑋𝑛 ≈ 𝑡 𝑋𝑛 in place of the literal 𝑠 ≈ 𝑡 of functional
type, which usually makes the clause more useful. To prefer clauses that are only mildly
higher-order, we designed the function PreferEasyHO (PEHO). It prefers clauses that are the
result of ARGCONG, have equations between terms of functional type or between higher-
order patterns, or have literals containing logical symbols, in that order of priority.

A higher-order inference that applies a complicated substitution to a clause is usually
followed by a 𝛽𝜂-reduction step. If 𝛽𝜂-reduction greatly reduces the size of a clause, it is
likely that this substitution simplifies the clause (e.g., by removing a variable’s arguments).
The new priority function ByNormalizationFactor (BNF) is designed to exploit this obser-
vation. It prefers clauses that were produced by 𝛽𝜂-reduction, and among those it prefers
the ones with larger size reductions.

Another new priority function is PreferShallowAppVars (PSAV). This prefers clauses
with lower depths of the deepest occurrence of an applied variable—that is, 𝐶[𝑋 a] is pre-
ferred over 𝐶[f (𝑋 a)]. The intuition is that applying a substitution to an applied variable
often reduces the variable to a term with a constant head, yielding a less explosive clause,
and the gain is greater for variables closer to the top level. Among the functions that rely
on properties of applied variables, we implemented PreferDeepAppVars (PDAV), which re-
turns the priority opposite of PSAV, and ByAppVarNum (BAVN), which prefers clauses with
fewer occurrences of applied variables.

Evaluation and Discussion In the base configuration (base), Zipperposition visits sev-
eral clause queues. The configuration uses queues that prefer the clauses that stem from
the conjecture, the ones that have at least one positive literal, the ones that have been
moved from the active to the passive set, and so on. One of the queues uses the constant
priority function ConstPrio (CP), meaning that it assigns the same priority to every clause.
As this queue is the most often visited one in base, changing its priority function should
affect the result noticeably. To evaluate the new priority functions, we replaced CP with

6

126 Making Higher-Order Superposition Work

CP BAVN PL PSAV PHOS PEHO BNF PDAV

TPTP 1635⋆ 1640 1604 1635 1609 1617 1575 1533
SH 452⋆ 451 417 450 439 407 411 302

Figure 6.5: Impact of the priority function

∞ 16 8 4 2 1
TPTP 1635⋆ 1625 1632 1629 1628 1618
SH 452⋆ 438 435 439 435 440

Figure 6.6: Impact of the FLUIDSUP weight increment 𝐾incr

one of the new functions in this queue, leaving the clause weight intact. The results are
shown in Figure 6.5.

Even though the constant priority function achieves a remarkable performance, the
new priority functions are useful additions to the prover’s repertoire: 37 additional TPTP
problems and 17 additional SH problems can be proved when some nonconstant priority
is used. The generally average-performing PEHO function can prove nine problems not
proved with any other priority function on TPTP (and one on SH). Globally, 24 TPTP
problems and six SH problems can be proved exclusively using one particular priority
function.

Although it is necessary for refutational completeness, the FLUIDSUP rule is disabled in
base because it is so explosive and so seldom useful. To test whether increasing inference
stream weights makes a difference on the success rate, we tried enabling FLUIDSUP with
different weight increments 𝐾incr for FLUIDSUP inference queues. The results are shown in
Figure 6.6. As expected, using a low increment with FLUIDSUP is detrimental on TPTP. On
this benchmark set, 16 additional problems can be proved when FLUIDSUP is enabled. The
penalty mostly affects only proving time: All but two of these problems were proved by
using at least three different values of 𝐾incr. On SH problems, the best result is obtained
when the rule is disabled as well. Unexpectedly, the next best result is obtained when𝐾incr = 1.
6.8 Controlling the Use of Backends
Cooperation with efficient off-the-shelf first-order theorem provers is an essential feature
of higher-order theorem provers such as Leo-III [151, Sect. 4.4] and Satallax [39]. Those
provers invoke first-order backends repeatedly during a proof attempt and spend a sub-
stantial amount of time in backend collaboration. Since 𝜆Sup generalizes a highly efficient
first-order calculus, we expect that future efficient 𝜆Sup implementations will not benefit
much from backends. Nevertheless, experimental provers such as Zipperposition can still
gain a lot. We present some techniques for controlling the use of backends.

In his thesis [151, Sect. 6.1], Steen extensively studies the effects of using different first-
order backends on the performance of Leo-III. His results suggest that adding only one

6.8 Controlling the Use of Backends

6

127

−Ehoh 0.1 0.25 0.5 0.75
TPTP 1635⋆ 1981 1980 1979 1972
SH 452⋆ 606 608 600 592

Figure 6.7: Impact of the backend invocation point𝐾time

−Ehoh lifting SKBCI omitted

TPTP 1635⋆ 1980 1877 1866
SH 452⋆ 608 577 566

Figure 6.8: Impact of the method used to translate𝜆-abstractions
backend already substantially improves the performance. To reduce the effort required for
integratingmultiple backends, we chose Ehoh, an extension of E [147] that supports 𝜆fSup,
as our single backend. In Chapter 3, we described Ehoh in detail. On the one hand, Ehoh
provides the efficiency of E while easing the translation from full higher-order logic—the
only missing syntactic feature is 𝜆-abstraction. On the other hand, Ehoh’s higher-order
reasoning capabilities are limited. Its unification algorithm is essentially first-order, and
it cannot synthesize 𝜆-abstractions.

In a departure from Leo-III and other cooperative provers, instead of regularly invok-
ing the backend, we invoke it at most once during a run of Zipperposition. This is because
most competitive higher-order provers, including Zipperposition, use a portfolio mode in
which many configurations are run for a short time, and we want to leave enough time for
native higher-order reasoning. Moreover, multiple backend invocations tend to be waste-
ful, because currently each invocation starts with no knowledge of the previous ones.

Only a carefully chosen subset of the available clauses are translated and sent to Ehoh.
Let 𝐼 be the set of clauses representing the input problem. Given a proof state, let𝑀 denote
the union of the current active and passive sets, and let 𝑀ho denote the subset of 𝑀 that
contains only clauses that were derived using at least one 𝜆Sup rule not present in regular
superposition. We order the clauses in𝑀ho by increasing derivation depth, using syntactic
weight to break ties. Then we choose all clauses in 𝐼 and the first 𝐾size clauses from 𝑀ho
for use with the backend reasoner. We leave out clauses in 𝑀 ⧵ (𝐼 ∪𝑀ho) because Ehoh
can rederive them. We also expect large clauses with deep derivations to be less useful.

The remaining step is the translation of 𝜆-abstractions. We implemented two transla-
tion methods: 𝜆-lifting [87] and SKBCI combinators [165]. For SKBCI, we omit the combi-
nator definition axioms, because they are very explosive [25]. A third mode simply omits
clauses containing 𝜆-abstractions.
Evaluation and Discussion In Zipperposition, we can adjust the CPU time allotted
to Ehoh, Ehoh’s own parameters, the point when Ehoh is invoked, the number 𝐾size of
selected clauses from 𝑀ho, and the 𝜆 translation method. We fix the time limit to 3 s, use
Ehoh in autoschedule mode, and focus on the last three parameters. In base, collaboration
with Ehoh is disabled (labeled −Ehoh).

Ehoh is invoked after 𝐾time ⋅ 𝑡 CPU seconds, where 0 ≤ 𝐾time < 1 and 𝑡 is the total
CPU time allotted to Zipperposition. Figure 6.7 shows the effect of varying 𝐾time when𝐾size = 32 and 𝜆-lifting is used. The evaluation confirms that using a highly optimized
backend such as Ehoh greatly improves the performance of a less optimized prover such
as Zipperposition. The figure indicates that it is preferable to invoke the backend early.
We have observed that if the backend is invoked late, small clauses with deep derivations

6

128 Making Higher-Order Superposition Work

−Ehoh 16 32 64 128 256 512
TPTP 1635⋆ 1985 1980 1978 1968 1968 1919
SH 452⋆ 606 608 600 598 596 589

Figure 6.9: Impact of the number of selected clauses 𝐾size

tend to be present. These clausesmight have been used to delete important shallow clauses
already. But due to their derivation depth, they will not be sent to Ehoh. In such situations,
it is better to invoke the backend before the important clauses are deleted.

Figure 6.8 quantifies the effects of the three 𝜆-abstraction translation methods. We
fixed 𝐾time = 0.25 and 𝐾size = 32. The clear winner is 𝜆-lifting. SKBCI combinators perform
slightly better than omitting clauses containing 𝜆-abstractions.

Figure 6.9 shows the effect of 𝐾size on performance, with 𝐾time = 0.25 and 𝜆-lifting.
Including a small number of higher-order clauses with the lowest weight performs better
than including a large number of such clauses.

6.9 Comparison with Other Provers
Different choices of parameters lead to noticeably different sets of proved problems. In an
attempt to use Zipperposition 2 to its full potential, we created a portfolio mode that runs
up to 50 configurations in parallel during the allotted time. The portfolio was designed to
solve as many problems as possible from the TPTP benchmark set. To provide some con-
text, we compare Zipperposition 2 with the following versions of all other higher-order
provers that competed at CASC in 2020: CVC4 1.9 [12], Leo-III 1.5.6 [153], Satallax 3.5
[39], and Vampire 4.5.1 [25]. The provers were run using the same parameters as in CASC,
but with updated executables. Note that Vampire’s higher-order schedule is optimized for
running on a single core. We also include Ehoh 2.7, the first version of this prover to syn-
tactically support full higher-order logic, including 𝜆-abstractions. Semantically, Ehoh 2.7
is arguably the weakest among the listed provers: It simply performs 𝑜-RW rewriting de-
scribed in Sect. 6.3 followed by 𝜆-lifting before it applies 𝜆fSup [15] on the preprocessed
problem. It is a conservative extension of Ehoh presented in Chapter 3, and serves as a
baseline for comparison with 𝜆E introduced in Chapter 7.

We use the same benchmark sets as elsewhere in this chapter. To imitate the setup
of the 2020 edition of CASC, we use a 120 s wall-clock limit and a 960 s CPU limit. We
carried out our evaluation on the 8-core CPU nodes that were used for CASC in 2020. We
also ran Zipperposition in uncooperative mode, in which its collaboration with a backend
is disabled. Figure 6.10 summarizes the results.

The evaluation results corroborate the CASC results. They also show that Zipperposi-
tion outperforms all other provers on SH benchmarks. This confirms our hypothesis that𝑜𝜆Sup is a suitable basis for automatic higher-order reasoning. Further confirmation is pro-
vided by the success rate of Zipperposition’s uncooperative version: Even without back-
end, Zipperposition is substantially better than all other provers on TPTP benchmarks, and
it matches the performance of the top contenders on SH. On the other hand, the increase
in performance due to the addition of an efficient backend suggests that the implemen-

6.10 Discussion and Conclusion

6

129

TPTP SH

CVC4 1816 587
Ehoh 1980 676
Leo-III 2122 616
Satallax 2175 588
Vampire 2072 660
Zipperposition-uncoop 2311 652
Zipperposition 2412 715

Figure 6.10: Comparison of competing higher-order theorem provers

tation of this calculus in a modern first-order superposition prover such as E or Vampire
would achieve even better results. In Chapter 7 we describe how a version of 𝑜𝜆Sup is
implemented in E.

We believe that there are still techniques inspired by tableaux, SAT solving, and SMT
solving that can be adapted and integrated in saturation provers. In particular, there are
still 25 TPTP problems and 17 SH problems that can be proved by other provers but not
by Zipperposition.

6.10 Discussion and Conclusion
Back in 1994, Kohlhase [96, Sect. 1.3] was optimistic about the future of higher-order au-
tomated reasoning:

The obstacles to proof search intrinsic to higher-order logic may well be com-
pensated by the greater expressive power of higher-order logic and by the
existence of shorter proofs. Thus higher-order automated theorem proving
will be practically as feasible as first-order theorem proving is now as soon as
the technological backlog is made up.

For higher-order superposition, the backlog consisted of designing calculus extensions,
heuristics, and algorithms that mitigate its weaknesses. In this chapter, we presented
such enhancements, justified their design, and evaluated them. We explained how each
weak point in the higher-order proving pipeline could be improved, from preprocessing to
reasoning about formulas, to delaying unpromising or explosive inferences, to invoking a
backend. Our evaluation indicates that higher-order superposition is now the state of the
art in higher-order reasoning.

Higher-order extensions of first-order superposition have been considered by Bent-
kamp et al. [15, 18] and Bhayat and Reger [24, 25]. They introduced proof calculi, proved
them refutationally complete, and suggested optional rules, but they hardly discussed the
practical aspects of higher-order superposition. Extensions of SMT are discussed by Bar-
bosa et al. [11]. Bachmair and Ganzinger [6], Manna and Waldinger [110], and Murray
[122] have studied nonclausal resolution calculi.

In contrast, there is a vast literature on practical aspects of first-order reasoning using
superposition and related calculi. The literature evaluates various procedures and tech-

6

130 Making Higher-Order Superposition Work

niques [79, 136], literal and term order selection functions [78], and clause evaluation
functions [70, 148], among others. Our work joins the select club of publications devoted
to practical aspects of higher-order reasoning [21, 60, 152, 174].

The work presented in this chapter proved invaluable to reaching the last stop on
the road to the implementation of full higher-order logic in a state-of-the-art first-order
prover. We used the results and experience we gained with this work to choose a set of
well-performing easy-to-implement calculus extensions and heuristics. We implemented
them in Ehoh, obtaining a prover called 𝜆E. This new prover substantially increases the
higher-order reasoning capabilities of Ehoh. Even without all of the techniques described
in this chapter, it outperforms all higher-order provers except for Zipperposition. We give
a detailed description of 𝜆E, as well as the reasoning behind all design decisions we took
in Chapter 7.

7

131

7
Extending a Brainiac Prover to

Higher-Order Logic

Joint work with
Jasmin Blanchette and Stephan Schulz

The automatic discharge of tedious subgoals is high on the wishlist of many users of proof
assistants. Some proof assistants discharge such goals by translating them to first-order logic
and invoking an efficient prover on them, but much is lost in translation. As an alternative, we
propose to extend a first-order prover with native support for higher-order features. Building
on our extension of E to 𝜆-free higher-order logic, we extended E to full higher-order logic. The
resulting prover is the strongest one on benchmarks coming from a proof assistant, and the
second strongest on TPTP benchmarks.

In this work I designed, implemented, and evaluated all changes to term representation, algorithms, and indexing
data structures. Jasmin Blanchette did the daily supervision. Stephan Schulz provided the necessary E expertise.

7

132 Extending a Brainiac Prover to Higher-Order Logic

7.1 Introduction and Background
In Chapter 3 of this thesis we introduced Ehoh, a rather conservative extension of state-
of-the-art first-order prover to a fragment of higher-order logic devoid of 𝜆-abstraction.
This extension gave us a feeling for the difficulties that might be encountered on the way
to full higher-order logic. In the chapters that precede this one, we discussed many ways
in which those difficulties can be overcome. In this chapter, we fulfill the promise given
in the beginning of the thesis: We present the extension of Ehoh to full higher-order logic
using incomplete variants of 𝜆-superposition. This prover is called 𝜆E.

The 𝜆-superposition calculi were previously implemented in Zipperposition, and ex-
tensive experiments with various heuristic choices have been performed (Chapter 6). In𝜆E’s implementation we used this experience to choose a set of effective rules that could
easily be retrofitted into an originally first-order prover. Another principle that guided the
design of 𝜆E was gracefulness: We made sure that our changes do not impact the strong
first-order performance of E and 𝜆-free higher-order performance of Ehoh.

One of the main challenges we faced was retrofitting 𝜆-terms in Ehoh’s term repre-
sentation (Sect. 7.2). Furthermore, Ehoh’s main inference engine was designed with the
assumption that it will be used with inferences that compute an MGU. We implemented a
higher-order unification procedure (Chapter 4) that can return multiple unifiers (Sect. 7.3)
and integrated it in the inference engine. Finally, we extended and adapted the rules of
superposition calculus, resulting in an incomplete, pragmatic variant of 𝜆-superposition
(Sect. 7.4).

We evaluated 𝜆E on a selection of proof assistants benchmarks as well as all higher-
order theorems in the TPTP library [157] (Sect. 7.5). We found that 𝜆E clearly outper-
formed Ehoh on all benchmarks. It outperformed all other higher-order provers on the
proof assistant benchmarks; on the TPTP benchmarks it ended up second only to the coop-
erative version of Zipperposition, which employs Ehoh as a backend. An arguably fairer
comparison without the backend puts 𝜆E in first place for both benchmark suites. We
also compared the performance of 𝜆E with E on first-order problems and found that no
overhead has been introduced by the extension to higher-order logic.

Background The logic that 𝜆E targets is the monomorphic higher-order logic described
in Sect. 2.3. We reuse all the notions from this section, with the corresponding notations.
As in the previous chapter, we simplify the notation by writing predicate literals in un-
encoded form: Positive literal 𝑠 ≈ ⊤⊤⊤ is written as 𝑠 and negative literal 𝑠 ≉ ⊤ is written
as ¬𝑠. This chapter discusses three tightly related provers E, Ehoh, and 𝜆E, which are
disambiguated as follows:

• E is a state-of-the-art first-order prover based on superposition. It is described in
Sect. 2.5.7.

• Ehoh is an extension of E to support 𝜆-free higher-order logic. Chapter 3 is dedicated
to Ehoh.

• 𝜆E further builds on Ehoh to support full higher-order logic. It is the latest prover
described in this chapter.

7.2 Terms

7

133

7.2 Terms
E has been designed around perfect term sharing [109], a design that we carried on to Ehoh
and 𝜆E: Any two structurally identical terms are guaranteed to be the same object in mem-
ory. This is achieved through term cells, which represent individual terms. Each cell has
(among other fields) (1) f_code, an integer corresponding to the symbol at the head of the
term (negative if the head is a free variable, positive otherwise); (2) num_args, correspond-
ing to the number of arguments applied to the head; and (3) args, a size-num_args array
of pointers to argument terms. We use the first-order notation f(𝑠1,…, 𝑠𝑛) to denote a cell
whose f_code corresponds to f, num_args equals 𝑛, and args points to the cells for 𝑠1,…𝑠𝑛 .

Ehoh represents 𝜆-free higher-order terms using flattened, spine notation (Sect. 3.3).
Thus, the terms f, fa, and fab are represented by the cells f, f(a), and f(a,b), respectively.
To ensure free variables are perfectly shared, Ehoh treats applied free variables differently:
Arguments are not applied directly to a free variable, but using an internal symbol @ of
variable arity. For example, the term 𝑋 ab is represented by the cell @(𝑋 ,a,b). This ensures
that two different occurrences of the free variable 𝑋 correspond to the same object, which
makes substitutions more efficient.

Representation of 𝜆𝜆𝜆-Terms To support full higher-order logic, Ehoh’s 𝜆-free cell data
structure had to be extended to support the 𝜆 binder. We use the locally nameless represen-
tation [45] for this purpose: De Bruijn indices represent (possibly loose) bound variables,
whereas we keep the current representation for free (and applied) variables.

Extending the term representation of Ehoh with a new term kind involves intricate
manipulation of the cell data structure. De Bruijn indices must be represented as other
cells with either a negative or a positive f_code. However, this has to be done in such a
way that a De Bruijn index can never be mistaken for a function symbol or a variable.

Other than possibly being instantiated during 𝛽-reduction, De Bruijn indices mostly
behave as constants. Therefore, we decided to represent De Bruijn indices using positive
f_codes: The De Bruijn index of value 𝑖 will have 𝑖 as the f_code. To ensure De Bruijn
indices are not mistaken for function symbols, we use the properties bitfield of the cell,
which holds precomputed properties of the cell. We introduce the property IsDBVar to
denote that the cell represents a De Bruijn index. Any attempt to create a De Bruijn index
is performed through a dedicated library function that sets the IsDBVar property for every
term it returns. When given the sameDe Bruijn index and type, this function is guaranteed
to always return the same object. Finally, we have guarded all the functions and macros
that manipulate function codes with the check if the property IsDBVar is set. To ensure
perfect sharing of every occurrence of De Bruijn indices, arguments to De Bruijn indices
are applied like for free variables, using @.

Extending cells to support 𝜆-abstraction is easier. Each 𝜆-abstraction has the distin-
guished function code LAM as the head symbol and two arguments: (1) a De Bruijn index 0
of the type of the abstracted variable; (2) the body of the 𝜆-abstraction. Consider the term𝜆𝑥.𝜆𝑦. f𝑥 𝑥 , where both 𝑥 and 𝑦 have the type 𝜄. This term is represented as 𝜆𝜆 f11 in lo-
cally nameless representation, where bold numbers represent De Bruijn indices. In 𝜆E, the
same term is represented by the cell LAM(0,LAM(0, f(1,1))), where all De Bruijn variables
have type 𝜄.

7

134 Extending a Brainiac Prover to Higher-Order Logic

The first argument of LAM is redundant, since it can be deduced from the type of the𝜆-abstraction. However, basic 𝜆-term manipulation operations often require access to this
term. We store it explicitly to avoid creating it repeatedly.

Efficient 𝛽𝛽𝛽-Reduction Terms are stored in 𝛽𝜂-reduced form. As these two reductions
are performed very often, they ought to be efficient. 𝜆E performs 𝛽-reduction by reducing
the leftmost outermost 𝛽-redex first. To represent 𝛽-redexes, it uses the @ symbol. Thus,
the term (𝜆𝑥.𝜆𝑦. (𝑥 𝑦)) fa is represented by @(LAM(0,LAM(0,@(1,0))), f,a). Another option
would have been to add arguments applied to 𝜆-term directly to the 𝜆 representation (as in
LAM(0,LAM(0,@(1,0)), f,a)), but this would break the invariant that LAM has two arguments.
Furthermore, replacing free variables with 𝜆-abstractions (e.g., replacing 𝑋 with 𝜆𝑥.𝑥 in
@(𝑋 ,a)) would require additional normalization.

A term is 𝛽-reduced as follows: When a cell of the form @(LAM(0, 𝑠), 𝑡) is encountered,
the field binding (normally used to record the substitution for a free variable) of the cell 0
is set to 𝑡 . Then 𝑠 is traversed to instantiate every loose occurrence of 0 in 𝑠 with binding,
whose loose bound De Bruijn indices are shifted by the number of 𝜆 binders above the
occurrence of 0 in 𝑠 [90]. Next, the same procedure is performed on the resulting term
and its subterms, in leftmost outermost fashion.𝜆E’s basic 𝛽-normalization mechanism works in this way, but it features a few opti-
mizations. First, 𝜆E recognizes terms of the form (𝜆𝑥𝑛. 𝑠) 𝑡𝑛 and performs parallel replace-
ment of the bound variables 𝑥𝑖 with 𝑡𝑖 . Since intermediate terms are not constructed, this
reduces the number of recursive function calls and calls to the cell allocator.

Second, in line with the gracefulness principle, we wanted 𝜆E to incur little (if any)
overhead on first-order problems and to excel on higher-order problems with a large
first-order component. If 𝛽-reduction is implemented naively, finding a 𝛽-redex involves
traversing the entire term. On purely first-order terms, 𝛽-reduction is then a complete
waste of time.

To avoid this, we use Ehoh’s perfectly shared terms and their properties field. We in-
troduce the property HasBetaReducibleSubterm, which is set if a cell is 𝛽-reducible. When-
ever a new cell that contains a 𝛽-reducible term as a direct subterm is shared, the property
is set. Setting of the property is inductively continued when further superterms are shared.
For example, in the term 𝑡 = fa (g((𝜆𝑥.𝑥)a)), the cells for (𝜆𝑥.𝑥)a, g ((𝜆𝑥.𝑥)a), and 𝑡 itself
have the property HasBetaReducibleSubterm set. When it needs to find 𝛽-reducible sub-
terms, 𝜆E will visit only the cells with this property set. This further means that on first-
order subterms, a single bit masking operation is enough to determine that no subterm
should be visited.

Along similar lines, we added a property HasDBSubterm that caches whether the cell
contains a De Bruijn subterm. This makes instantiating De Bruijn indices during 𝛽-norma-
lization faster, since only the subterms that contain De Bruijn indices must be visited.
Similarly, some other operations such as shiftingDe Bruijn indices or determiningwhether
a term is closed (i.e., it contains no loose bound variables) can be sped up or even avoided
if the term is first-order.

Efficient 𝜂𝜂𝜂-Reduction The term 𝜆𝑥. 𝑠 𝑥 is 𝜂-reduced to 𝑠 whenever 𝑥 is not a loose
bound variable in 𝑠. Caching the property of 𝜂-reducibility of the term is not as beneficial

7.2 Terms

7

135

as the one for 𝛽-reducibility, because checking this property at the term’s top level is done
in 𝑂(|𝑠|), compared with constant time for 𝛽-reducibility. However, we use the observa-
tion that a term cannot be 𝜂-reduced if it has no 𝜆-abstraction subterms and introduce a
property HasLambda that notes the presence of 𝜆-abstraction in a term. Only terms with
this property are visited during 𝜂-reduction.𝜆E performs parallel 𝜂-reduction: It recognizes terms of the form 𝜆𝑥𝑛. 𝑠 𝑥𝑛 such that
none of the 𝑥𝑖 occurs loose bound in 𝑠. If done naively, reducing terms of this kind requires
up to 𝑛 traversals of 𝑠 to check if each 𝑥𝑖 occurs in 𝑠. In 𝜆E, exactly one traversal of 𝑠 is
required.

More specifically, when 𝜂-reducing a cell LAM(0, 𝑠), 𝜆E considers all 𝜆 binders in 𝑠 as
well. In general, the cell will be of the form LAM(0,… ,LAM(0, 𝑡)…), where 𝑡 is not a 𝜆-
abstraction, and 𝑙 is the number of LAM symbols above 𝑡 . Then 𝜆E breaks down the body 𝑡
into a maximal decomposition 𝑢 (n−1) … 10. If 𝑛 = 0, the cell is not 𝜂-reducible. Other-
wise, 𝑢 is traversed to determine the minimal index j of a loose De Bruijn index, taking
j = ∞ if no such index exists. Then the 𝑘 = min{𝑗, 𝑙,𝑛} rightmost outermost 𝜆 binders
in LAM(0,… ,LAM(0, 𝑡)…) can be removed and 𝑡 can be replaced by the variant of 𝑢 (n−1)… (k +1)k obtained by shifting the loose De Bruijn indices down by 𝑘.

To better understand this convolutedDe Bruijn arithmetic, consider the term 𝜆𝑥.𝜆𝑦.𝜆𝑧.
f𝑥 𝑥 𝑦 𝑧. This term is represented by the cell LAM(0,LAM(0,LAM(0, f(2,2,1,0)))). 𝜆E splits
f(2,2,1,0) into two parts: 𝑢 = f2 and the arguments 2,1,0. Since the minimal index in 𝑢 is
2, we can omit the De Bruijn indices 1 and 0 and their 𝜆 binders, yielding the 𝜂-reduced
cell LAM(0, f(0,0)).

The use of the HasLambda property ensures that 𝜂-reduction is not tried on first-order
or 𝜆-free higher-order terms, whereas parallel 𝜂-reduction both speeds up 𝜂-reduction and
avoids creating a linear number of intermediate terms. For finding the minimal loose De
Bruijn index, optimizations such as the HasDBSubterm property are used.

Representation of Boolean Terms E represents Boolean terms using term cells whose
f_codes correspond to internal codes reserved for logical symbols. Quantified formulas are
represented by cells in which the first argument is the quantified variable and the second
one is the body of the quantified formula. For example, the term ∀∀∀𝑥.p𝑥 corresponds to
the cell ∀∀∀(𝑋 ,p(𝑋)), where 𝑋 is a regular free variable.

This representation is convenient for parsing formulas and clausification, which is
what E uses it for, but it causes 𝛼-normalization issues during the actual proof search:
In full higher-order logic, Boolean terms can appear as subterms in clauses, as in q(𝑋) ∨
p(∀∀∀(𝑋 , r(𝑋))); instantiating 𝑋 in the first literal should not influence 𝑋 in the second literal.

To avoid this issue, in 𝜆E we use 𝜆 binders to represent quantified formulas. Thus,∀∀∀𝑥. 𝑠 is represented by ∀∀∀(𝜆𝑥. 𝑠). Quantifiers are then unary symbols that do not directly
bind the variables but delegate this responsibility to a 𝜆-abstraction. Since 𝜆E represents
bound variables usingDe Bruijn indices, this solves the 𝛼-conversion issues. However, this
solution is incompatible with thousands of decades-old lines of clausification code that
assumes the E representation of quantified formulas. Therefore, 𝜆E converts quantified
formulas only after clausification, for Boolean terms that appear in a higher-order context
(e.g., as argument to a function symbol).

7

136 Extending a Brainiac Prover to Higher-Order Logic

NewTermOrders The 𝜆-superposition calculus is parameterized by a term order that is
used to break symmetries in the search space. We implemented the versions of the Knuth–
Bendix order (KBO) and lexicographic path order (LPO) for higher-order terms with 𝜆-
abstractions described by Bentkamp et al. [17]. These orders encode 𝜆-terms as first-order
terms and then invoke the standard KBO or LPO. For efficiency, we implemented separate
KBO and LPO functions that compute the order directly, intertwining the encoding and
the order computation.

Ehoh cells contain a binding field that can be used to store the substitution for a free
variable. Substitutions can then be applied by following the binding pointers, replacing
each free variable with its instance. Thus, when Ehoh needs to perform a KBO or LPO
comparison of an instantiated term, it needs only follow the binding pointers. In full
higher-order logic, however, instantiating a variable can trigger a series of 𝛽𝜂-reductions,
changing the shape of the term dramatically. To prevent this, 𝜆E computes the 𝛽𝜂-reduced
instances of the terms before comparing them using KBO or LPO.

7.3 Unification, Matching, and Term Indexing
Standard superposition crucially depends on the concept of anMGU. In higher-order logic,
such a unifier does not in general exist, and the concept is replaced by that of a complete set
of unifiers (CSU), which may be infinite. In Chapter 4, we described an efficient procedure
to enumerate a CSU for a term pair. It is implemented in Zipperposition, together with
some extensions to term indexing. In 𝜆E, we further improve the performance of this
procedure by implementing a terminating, incomplete variant. We also introduce a new
indexing data structure.

7.3.1 The Unification Procedure
The unification procedure works by maintaining a list of unification pairs to be solved.
After choosing a pair, it first normalizes it by 𝛽-reducing and instantiating the heads of
both terms in the pair. Then, if either head is a variable, it computes an appropriate binding
for this variable, thereby approximating the solution.

Unlike in first-order and 𝜆-free higher-order unification, in the full higher-order case
there may be many bindings that lead to a solution. To reduce this mostly blind guessing
of bindings, the procedure features support for oracles (Sect. 4.3). These are procedures
that solve the unification problem for a subclass of higher-order terms on which unifica-
tion is decidable and, in the case of 𝜆E, unary. Oracles help increase performance, avoid
nontermination, and avoid redundant bindings.

In Chapter 4, the unification procedure is described as a transition system. In 𝜆E, the
procedure is implemented nonrecursively, and the unifiers are enumerated using an iter-
ator object that encapsulates the unifier search state. The iterator consists of five fields:

1. constraints, which holds the unification constraints

2. bt_state, a stack that contains information necessary to backtrack to a previous state

3. branch_iter, which stores how far we are in exploring different possibilities from the
current search node

7.3 Unification, Matching, and Term Indexing

7

137

4. steps, which remembers how many different unification bindings (such as imitation,
projection, and identification) are applied

5. subst, a stack storing the variables bound so far

The iterator is initialized to hold the original problem in constraints, and all other
fields are initially empty. The unifiers are retrieved one by one by calling the function
FORWARDITER. It returns TRUE if the iterator made progress, in which case the unifier
can be read via the iterator’s subst field. Otherwise, no more unifiers can be found, and
the iterator is no longer valid. The function’s pseudocode is given below, including two
auxiliary functions NORMALIZEHEAD and BACKTRACKITER:

function FORWARDITER(iter)
forward ← ¬iter.constraints.empty() ∨BACKTRACKITER(iter)
while forward∧¬iter.constraints.empty() do(lhs, rhs) ← pop pair from iter.constraints

lhs ← NORMALIZEHEAD(lhs)
rhs ← NORMALIZEHEAD(rhs)
normalize and discard the 𝜆 prefixes of lhs and rhs
if ¬lhs.head.is_var() ∧ rhs.head.is_var() then

swap lhs and rhs
if lhs.head.is_var() then

oracle_res ← FIXPOINT(lhs, rhs, iter.subst)
if oracle_res = NOTINFRAGMENT then

oracle_res ← PATTERN(lhs, rhs, iter.subst)
if oracle_res = NOTUNIFIABLE then

forward ← BACKTRACKITER(ITER)
else if oracle_res = NOTINFRAGMENT then

n_steps,n_branch_iter,n_binding ←
NEXTBINDING(lhs, rhs, iter.steps, iter.branch_iter)

if n_branch_iter ≠ BINDEND then
push pair (lhs, rhs) back to iter.constraints
push quadruple (iter.constraints,n_branch_iter,

iter.steps, iter.subst) onto iter.bt_state
extend iter.subst with n_binding
iter.steps ← n_steps
iter.branch_iter ← BINDBEGIN

else if lhs.head = rhs.head then
push the constraint pairs of arguments of lhs and rhs to iter.constraints
iter.branch_iter ← BINDBEGIN

else if lhs.head = rhs.head then
push the constraint pairs of arguments of lhs and rhs to iter.constraints

else
forward ← BACKTRACKITER(iter)

return forward

7

138 Extending a Brainiac Prover to Higher-Order Logic

function NORMALIZEHEAD(t)
if t.head = @∧ t.args[0].is_lambda() then

reduce the top-level 𝛽-redex in 𝑡
return NORMALIZEHEAD(𝑡)

else if t.head.is_var() ∧ t.head.binding ≠ NIL then
t.head ← t.head.binding
return NORMALIZEHEAD(𝑡)

else
return 𝑡

function BACKTRACKITER(iter)
if iter.bt_state.empty() then

clear all fields in iter
return FALSE

else
pop (constraints,branch_iter, steps, subst) from iter.bt_state
set the corresponding fields of iter
return TRUE

FORWARDITER begins by backtracking if the previous attempt was successful (i.e., all
constraints were solved). If it finds a state from which it can continue, it takes term pairs
from constraints until there are no more constraints or it is determined that no unifier
exists. The terms are normalized by instantiating the head variable with its binding and
then reducing the potential top-level 𝛽-redex that appears. This instantiation and reduc-
tion process is repeated until there are no more top-level 𝛽-redexes and the head is not a
variable bound to some term. Then the term with shorter 𝜆 prefix is expanded (only on
the top level) so that 𝜆 prefixes have the same length. Finally, the 𝜆 prefix is ignored, and
we focus only on the body. In this way, we avoid fully substituting and normalizing terms
and perform just enough operations to determine the next step of the procedure.

If either term of the constraint is flex, we first invoke oracles to solve the constraint. 𝜆E
implements the most efficient oracles implemented in Zipperposition: fixpoint and pattern
(Sect. 4.7). An oracle can return three results: (1) there is an MGU for the pair (UNIFIABLE),
which is recorded in subst, and the next pair in constraints is tried; (2) noMGU exists for the
pair (NOTUNIFIABLE), which causes the iterator to backtrack; (3) if the pairs do not belong
to the subclass that oracle can solve (NOTINFRAGMENT), we generate possible variable
bindings—that is, we guess the approximate form of the solution.𝜆E has a special module that generates bindings (NEXTBINDING). This module is given
the current constraint and the values of branch_iter and steps, and it either returns the next
binding and the new values of branch_iter and steps or reports that all different variable
bindings are exhausted. The bindings that 𝜆E’s unification procedure creates are imitation,
Huet-style projection, identification, and elimination (one argument at a time) (Sect. 4.3).
A limit on the total number of applied binding rules can be set, as well as a limit on the
number of individual rule applications. The binding module checks whether limits are
reached using the iterator’s steps field.

Computing bindings is the only point in the procedure where the search tree branches
and different possibilities are explored. Thus, when 𝜆E follows the branch indicated by the
bindingmodule, it records the state to which it needs to return, should the followed branch

7.3 Unification, Matching, and Term Indexing

7

139

be backtracked. The state consists of the values of constraints, steps, and subst before the
branch is followed and the value of branch_iter that points past the followed branch. The
values of branch_iter are either BINDBEGIN, which denotes that no binding was created,
intermediate values that NEXTBINDING uses to remember how far through bindings it is,
and BINDEND, which indicates that all bindings are exhausted.

If all bindings are exhausted, the procedure checks whether the pair is flex–flex and
both sides have the same head. If so, the pair is decomposed and constraints are derived
from the arguments of the pair. Otherwise, the iterator backtracks. If the constraint is
rigid–rigid, for unification to succeed, the heads of both sides of the constraint must be
the same. Unification then continues with new constraints derived from the arguments.
Otherwise, the iterator must be backtracked.

7.3.2 Matching
In E, the matching algorithm is mostly used inside simplification rules such as demodu-
lation and subsumption [143]. As these rules must be efficiently performed, using any
complex matching algorithm is not a viable option. Instead, we implemented a matching
algorithm for the pattern class of terms [124] to complement Ehoh’s 𝜆-free higher-order
matching algorithm (Sect. 3.4). A term is a pattern if each of its free variables either has
no arguments (as in first-order logic) or is applied to distinct De Bruijn indices.

To determine which of the two algorithms to call (pattern or 𝜆-free), we added a cached
property HasNonPatternVar, which is set for terms of the form 𝑋 𝑠𝑛 where 𝑛 > 0 and either
there exists some 𝑠𝑖 that is not a De Bruijn index or there exist indices 𝑖 < 𝑗 such that𝑠𝑖 = 𝑠𝑗 is a De Bruijn index. This property is propagated to the superterms when they
are perfectly shared. This allows later checks if a term belongs to the pattern class to be
performed in constant time.

We have modified the 𝜆-free higher-order matching algorithm to treat 𝜆 prefixes as
above in the unification procedure—by bringing the prefixes to the same length and ignor-
ing them afterwards. This ensures that the algorithmwill never try tomatch a free variable
with a 𝜆-abstraction, making sure that 𝛽-redexes never appear (as in original 𝜆-free higher-
order matching). We also modified the algorithm to ensure that free variables are never
bound to terms that have loose bound variables. This algorithm cannot findmany complex
matching substitutions (matchers), but it can efficiently determine whether two terms are
variable renamings of each other or whether a simple matcher can be used, as in the case
of (𝑋 (𝜆𝑥.𝑥)b, f (𝜆𝑥.𝑥)b), where 𝑋 ↦ f is usually the desired matcher. If this algorithm
does not find a matcher and both terms are patterns, pattern matching is tried.

7.3.3 Indexing
E, like other modern theorem provers, efficiently retrieves unifiable or matchable pairs
of terms using indexing data structures. To find terms unifiable with a query term or
instances of a query term, it uses fingerprint indexing [144]. We extended this data struc-
ture to support (full) higher-order terms in Zipperposition (Sect. 4.6). We used the same
approach in 𝜆E, and we extended feature vector indices [145] in the same way.

E uses perfect discrimination trees [113] to find generalizations of the query term (i.e.,
terms of which the query term is an instance). This data structure is a trie that indexes
terms by representing them in a serialized, flattened form. The left branch from the root

7

140 Extending a Brainiac Prover to Higher-Order Logic

f

a

𝑋 a

g

𝑋 ab

c

h

LAM𝜄
LAM𝜄
𝑋 01

Figure 7.1: First-order, 𝜆-free higher-order, and higher-order pattern terms in a perfect discrimination tree

in Figure 7.1 shows how the first-order terms fa𝑋 and faa are stored. In Ehoh, this data
structure is extended to support partial application and applied variables (Sect. 3.5).

In 𝜆E, we extended this structure to support 𝜆-abstractions and the higher-order pat-
tern matching algorithm. To this end, we changed the way in which terms are serialized.
First, we require that all terms are fully 𝜂-expanded (except for arguments of variables
applied in patterns). Then, when the term is serialized, we dedicate a separate node for
applied variable terms 𝑋 𝑠𝑛 , instead of the node for 𝑋 followed by nodes for serialization
of arguments 𝑠𝑛 . We serialize 𝜆-abstraction 𝜆𝑥. 𝑠 using a special node LAM𝜏 , where 𝜏 is the
type of 𝑥 , followed by the serialization of 𝑠. Other than these two changes, serialization
remains as in Ehoh, following the gracefulness principle. Figure 7.1 shows how g (𝑋 ab)c
and h (𝜆𝑥.𝜆𝑦.𝑋 𝑦 𝑥) are serialized.

Since the terms are stored in serialized form, it is hard tomanipulate 𝜆 prefixes of stored
terms during matching. Performing 𝜂-expansion when serializing terms makes sure that
matchable terms have 𝜆 prefixes of the same length.

We have dedicated separate nodes for applied variables because access to arguments of
applied variables is necessary for the patternmatching algorithm. Even though arguments
can be obtained by querying the arity 𝑛 of the variable and taking the next 𝑛 arguments in
the serialization, this is both inefficient and inelegant. As for De Bruijn indices, we treat
them the same as function symbols and assign them their own nodes.

Following the notation from the extension of perfect discrimination trees to 𝜆-free
higher-order logic (Sect. 3.5), we now describe how enumeration of generalizations is
performed. To traverse the tree, 𝜆E begins at the root node and maintains two stacks:
term_stack and term_proc, where term_stack contains the subterms of the query term
that have to be matched, and term_proc contains processed terms that are used to back-
track to previous states. Initially, term_stack contains the query term, the current match-
ing substitution 𝜎 is empty, and the successor node is chosen among the child nodes as
follows:

A. If the node is labeled with a symbol 𝜉 (where 𝜉 is either a De Bruijn index or a
constant) and the top item 𝑡 of term_stack is of the form 𝜉 𝑡𝑛 , replace 𝑡 by 𝑛 new
items 𝑡1,… , 𝑡𝑛 , and push 𝑡 onto term_proc.

7.4 Preprocessing, Calculus, and Extensions

7

141

B. If the node is labeled with a symbol LAM𝜏 and the top item 𝑡 of term_stack is of the
form 𝜆𝑥. 𝑠 and the type of 𝑥 is 𝜏 , replace 𝑡 by 𝑠, and push 𝑡 onto term_proc.

C. If the node is labeled with a possibly applied variable 𝑋 𝑠𝑛 (where 𝑛 ≥ 0), and the top
item of term_stack is 𝑡 , the matching algorithm described above is run on 𝑋 𝑠𝑛 and𝑡 . The algorithm takes into account 𝜎 built so far and extends it if necessary. If the
algorithm succeeds, pop 𝑡 from term_stack, push it onto term_proc, and save the
original value of 𝜎 in the node.

Backtracking works in the opposite direction: If the current node is labeled with a
De Bruijn index or function symbol node of arity 𝑛, pop 𝑛 terms from term_stack and
move the top of term_proc to term_stack. If the node is labeled with LAM𝜏 , pop the top of
term_stack and move the top of term_proc to term_stack. Finally, if the node is labeled
with a possibly applied variable, move the top of the term_proc to term_stack and restore
the value of 𝜎 .

As an example of how finding a generalization works, consider the following states of
stacks and substitutions, which emerge when looking for generalizations of g (fab)c in
the tree of Figure 7.1: 𝜖 g g.(𝑋 ab) g.(𝑋 ab).c𝜎∶ ∅ ∅ {𝑋 ↦ f} {𝑋 ↦ f}

term_stack∶ [g (fab)c] [fab,c] [c] []
term_proc∶ [] [g (fab)c] [fab, g (fab)c] [c, fab, g (fab)c]

7.4 Preprocessing, Calculus, and Extensions
Ehoh’s simple 𝜆-free higher-order calculus performed well on Sledgehammer problems
and formed a promising stepping stone to full higher-order logic (Sect. 3.9). When imple-
menting support for full higher-order logic, we were guided by efficiency and gracefulness
with respect to Ehoh’s calculus rather than completeness. Whereas Zipperposition pro-
vides both complete and incomplete modes, 𝜆E only offers incomplete modes.

Preprocessing Our experience with Zipperposition showed the importance of flexibil-
ity in preprocessing the higher-order problems (Sect. 6.3). Therefore, we implemented a
flexible preprocessing module in 𝜆E.

To maintain compatibility with Ehoh, 𝜆E can optionally transform all 𝜆-abstractions
into named functions. This process is called 𝜆-lifting [83]. 𝜆E also removes all occurrences
of Boolean subterms (other than ⊤⊤⊤,⊥⊥⊥, and free variables) in higher-order contexts using
a FOOL-like transformation [98]. For example, the formula f(p∧∧∧q) ≈≈≈ a becomes (p∧∧∧q→→→
f(⊤⊤⊤) ≈≈≈ a)∧∧∧ (¬¬¬(p∧∧∧q)→→→ f(⊥⊥⊥) ≈≈≈ a).

Many TPTP problems use the definition role to denote the definitions of symbols. 𝜆E
can treat the definition axioms as rewrite rules, and replace all occurrences of defined sym-
bols during preprocessing. Furthermore, during SInE [80] axiom selection, it can always
include the defined symbol in the trigger relation.

7

142 Extending a Brainiac Prover to Higher-Order Logic

Calculus 𝜆E implements the same superposition calculus as Ehoh with three important
changes. First, wherever Ehoh requires the MGU of terms, 𝜆E enumerates unifiers from
a finite subset of the CSU, as explained in Sect. 7.3. Second, 𝜆E uses versions of the KBO
and LPO orders designed for 𝜆-terms.

The third difference is more subtle. One of the main features of Ehoh is prefix op-
timization (Sect. 3.1): a method that, given a demodulator 𝑠 ≈ 𝑡 , allows to replace both
applied and unapplied occurrences of 𝑠 by 𝑡 by traversing only first-order subterms of
a rewritable term. In a 𝜆-free setting this optimization is useful, but in the presence of𝛽𝜂-normalization, shapes of terms can change drastically, making it much harder to track
prefixes of terms. This is whywe disabled the prefix optimization in 𝜆E. To counterbalance
this removal, we introduced the argument congruence rule AC in 𝜆E and enabled positive
and negative functional extensionality (PE and NE) by default:𝑠 ≈ 𝑡 ∨ 𝐶

AC𝑠 𝑋 ≈ 𝑡 𝑋 ∨ 𝐶 𝑠 ≉ 𝑡 ∨ 𝐶
NE𝑠 (sk 𝑋) ≉ 𝑡 (sk 𝑋) ∨ 𝐶 𝑠 𝑋 ≈ 𝑡 𝑋 ∨ 𝐶

PE𝑠 ≈ 𝑡 ∨ 𝐶
AC and NE assume that 𝑠 and 𝑡 are of function type. In NE, 𝑋 denotes all the free variables
occurring in 𝑠 and 𝑡 , and sk is a fresh Skolem symbol of the appropriate type. PE has a
side condition that 𝑋 may not appear in 𝑠, 𝑡 , or 𝐶 .

Saturation E’s saturation procedure is based on the assumption that each attempt to
perform an inference will either result in a single clause or fail due to one of the infer-
ence side conditions. Unification procedures that produce multiple substitutions break
this invariant, and the saturation procedure needed to be adjusted.

In Sect. 6.6, we described a variant of the saturation procedure that elegantly supports
interleaving computations of unifiers and scheduling inferences to be performed. Since
completeness was not one of the 𝜆E design goals, we did not implement this version of the
saturation procedure. Instead, in places where previously a single unifier was expected,𝜆E consumes all elements of the iterator used for enumerating a unifier, converting them
to clauses.

Reasoning about Formulas Even though most of the Boolean structure is removed
during preprocessing, formulas can reappear at the top level of clauses during saturation.
For example, after replacing 𝑋 with 𝜆𝑥.𝜆𝑦.𝑥 ∧∧∧𝑦 , the clause 𝑋 pq ∨ a ≈ b becomes (p∧∧∧q) ∨
a ≈ b. 𝜆E converts every clause of the form 𝜑 ∨ 𝐶 , where 𝜑 has a logic symbol as its head
(or it is a (dis)equation between two formulas different than ⊤⊤⊤), to an explicitly quantified
formula. Then, the clausification algorithm is invoked on the formula to restore the clausal
structure. Zipperposition features more dynamic clausification modes, but for simplicity
we decided not to implement them in 𝜆E.

The 𝑜𝜆Sup calculus [17] includes many rules that act on Boolean subterms, which
are necessary for completeness. Other than Boolean simplification rules, which use sim-
ple tautologies such as p∧∧∧⊤⊤⊤ ↔↔↔ p to simplify terms, we have implemented none of the
Boolean rules of this calculus in 𝜆E. First, we have observed that complicated rules such
as FLUIDBOOLHOIST and FLUIDLOOBHOIST are hardly ever useful in practice and usually
only contribute to an uncontrolled increase in the proof state size. Second, simpler rules

7.5 Evaluation

7

143

such as BOOLHOIST can usually be simulated by pragmatic rules that perform Boolean and
functional extensionality reasoning, described below.

Tomake up for excluding Boolean rules, we use an incomplete, but more easily control-
lable and intuitive rule, called primitive instantiation. This rule instantiates free predicate
variables with approximations of formulas that are ground instances of this variable. We
described this rule in Sect. 5.3. In 𝜆E it is implemented in a similar manner.𝜆E’s handling of the Hilbert choice operator is inspired by Leo-III’s [153]. 𝜆E recog-
nizes clauses of the form ¬𝑃 𝑋 ∨𝑃 (f𝑃) which essentially denote that f is a choice symbol.
Then, when subterm f 𝑠 is found during saturation, 𝑠 is used to instantiate the choice ax-
iom for f. Similarly, Leibniz equality is eliminated by recognizing clauses of the form¬𝑃 a ∨ 𝑃 b ∨ 𝐶 . These clauses are then instantiated with 𝑃 ↦ 𝜆𝑥.𝑥 ≈ a and 𝑃 ↦ 𝜆𝑥.𝑥 ≉ b,
which results in a ≈ b∨𝐶 . Both rules are described in Sect. 5.3 in more detail.

Finally, 𝜆E treats induction axioms specially. Just like Zipperposition (Sect. 6.4), it
abstracts literals from the goal clauses and uses these abstractions to instantiate induction
axioms. Since Zipperposition supports dynamic calculus-level clausification, instantiation
of induction axioms happens during saturation, when these axioms are processed. In𝜆E, this instantiation is performed statically, immediately after clausification. After 𝜆E
collects all the abstractions, it traverses the clauses and instantiates those that have applied
variable of the same type as the abstraction.

Extensionality 𝜆E takes a pragmatic approach to reasoning about functional and
Boolean extensionality: It uses abstracting rules (ABS rules of Sect. 5.3) that simulate ba-
sic superposition calculus rules, but do not require unifiability of the partner terms in
the inference. More precisely, assume a core inference needs to be performed between
two 𝛽-reduced terms 𝑢 and 𝑣 , such that they can be represented as 𝑢 = 𝐶[𝑠1,…, 𝑠𝑛] and𝑣 = 𝐶[𝑡1,…, 𝑡𝑛], where 𝐶 is the most general common context (more precisely, green com-
mon context that does not go into the structure of 𝜆-abstraction or applied variables [18])
of 𝑢 and 𝑣 , not all of 𝑠𝑖 and 𝑡𝑗 are free variables, and for at least one 𝑖, 𝑠𝑖 ≠ 𝑡𝑖 , 𝑠𝑖 and 𝑡𝑖 are
not (possibly applied) free variables, and they are of Boolean or function type. Then, the
conclusion is formed by taking the conclusion 𝐷 of the core inference rule (which would
be created if 𝑠 and 𝑡 are unifiable) and adding literals 𝑠1 ≉ 𝑡1 ∨ ⋯ ∨ 𝑠𝑛 ≉ 𝑡𝑛 .

These rules are particularly useful because 𝜆E has no rules that dynamically process
Booleans in FOOL-like fashion, such as BOOLHOIST. For example, given the clauses f (p∧∧∧q)≈ a and g (fp) ≉ b, the abstracting version of the superposition rules SP and SN (Sect. 2.5.3)
would result in ga ≉ b ∨ (p∧∧∧q) ≉ p. In this way, the Boolean structure bubbles up to the top
level and is further processed by clausification. We noticed that this alleviates the need
for the other Boolean rules in practice.

7.5 Evaluation
In this section, we try to answer two questions about 𝜆E: How does 𝜆E compare against
other higher-order provers (including Ehoh)? Does 𝜆E introduce any overhead compared with
Ehoh? To answer these questions, we ran provers on problems from the TPTP library [157]
and on benchmarks generated by Sledgehammer (SH) [131]. The experiments were carried
out on StarExec Miami [154] nodes equipped with Intel Xeon E5-2620 v4 CPU clocked at

7

144 Extending a Brainiac Prover to Higher-Order Logic

2.10 GHz. For the TPTP part, we used the CASC-28¹ time limits: 120 s wall-clock and 960 s
CPU. For SH benchmarks and to answer the other question, we used Sledgehammer’s
default time limit: 30 s wall-clock and CPU. The raw evaluation data is available online².

Comparisonwith Other Provers To answer the first question, we let 𝜆E compete with
the top contenders in the higher-order division of CASC-28: cvc5 0.0.7,³ Ehoh 2.7, Leo-III
1.6.6 [153], Vampire 4.6 [25], and Zipperposition 2.1 (Chapter 6). We also included Satallax
3.5 [39]. We used all 2899 higher-order theorems in TPTP 7.5.0 as well as 5000 SH higher-
order benchmarks originating from the Seventeen benchmark suite [55]. On SH bench-
marks, cvc5, Ehoh, 𝜆E, Vampire, and Zipperposition were run using custom schedules pro-
vided by their developers, optimized for single-core usage and low timeouts. Otherwise,
we used the corresponding CASC configurations. Note that Ehoh 2.7 is an updated version
of Ehoh described in Chapter 3, which can parse not only 𝜆-free but also full higher-order.
It is only a syntactic extension as 𝜆-abstractions are supported using 𝜆-lifting [83]. We
included two versions of Zipperposition: coop uses Ehoh 2.7 as a backend to finish proof
attempts, whereas uncoop does not use this feature. The results are shown in Figure 7.2.

Both Ehoh and 𝜆E were run in the automatic scheduling mode. Compared to Ehoh,𝜆E features a redesigned module for automatic scheduling, it can use multiple CPU cores,
and its heuristics have been trained better on higher-order problems.𝜆E dramatically improves the higher-order reasoning capabilities compared to Ehoh. It
solves 20%more problems on TPTP benchmarks and 7%more problems on SH benchmarks,
where Ehoh was already very successful.𝜆Ewasmainly designed as an efficient backend to proof assistants. As such it excels on
SH benchmarks, outperforming the competition. On TPTP, it outperforms all higher-order
provers other than Zipperposition-coop. If Zipperposition’s Ehoh backend is disabled, 𝜆E
outperforms Zipperposition by a wide margin. This comparison is arguably fairer; after
all, 𝜆E does not use an older version of Zipperposition as a backend. These results suggest
that 𝜆E already implements most of the necessary features for a high-performance higher-
order prover but could benefit from the kind of fine-tuning that Zipperposition underwent
in the last two years.

Remarkably, there is a substantial disparity in the set of problems solved by 𝜆E and
Zipperposition-coop. The raw data show thats 𝜆E solves 181 SH problems and 24 TPTP
problems that Zipperposition-coop does not. The lower number of uniquely solved TPTP
problems is most likely due to Zipperposition’s being heavily optimized on TPTP.

Comparison with the First-Order E Both Ehoh and 𝜆E can be compiled in a mode
that disables most of the higher-order reasoning. This mode is designed for users that are
interested only in E’s first-order capabilities and care a lot about performance. To answer
the second evaluation question, about assessing overhead of 𝜆E, we chose all the 1138
unique problems used at CASC from 2019 to 2021 in the first-order theorem division and
ran Ehoh and 𝜆E both in this first-order (FO) mode and in higher-order (HO) mode using
30 s CPU and wallclock timeout.
¹http://www.tptp.org/CASC/28/
²https://doi.org/10.5281/zenodo.6389849
³https://cvc5.github.io/

http://www.tptp.org/CASC/28/
https://doi.org/10.5281/zenodo.6389849
https://cvc5.github.io/

7.6 Discussion and Related Work

7

145

TPTP SH

cvc5 1931 2577
Ehoh 2105 2611𝜆E 2533 2804
Leo-III 2282 1601
Satallax 2320 1719
Vampire 2203 2240
Zipperposition-coop 2583 2754
Zipperposition-uncoop 2483 2181

Figure 7.2: Comparison of higher-order provers

TPTP

Ehoh FO 535
Ehoh HO 538𝜆E FO 537𝜆E HO 541

Figure 7.3: Evaluation of 𝜆E’s
overhead

We fixed a single configuration of options, because Ehoh’s and 𝜆E’s automatic schedul-
ing methods could select different configurations and we would not be measuring the
overhead but the quality of the chosen configurations. We chose the boa configuration
(Sect. 3.7), which is the configuration that E 2.2 used most often in its automatic schedul-
ing mode. The results are shown in Figure 7.3.

Counterintuitively, the higher-order versions of both provers outperform the first-
order counterparts. However, the difference is so small that it can be attributed to the
changes to memory layout that affect the order in which clauses are chosen. Similar
effects are seen when comparing the first-order versions. We would expected the less
heavily modified version of E, Ehoh, to perform better, but due to subtle effects 𝜆E wins.

7.6 Discussion and RelatedWork
On the trajectory to 𝜆E, we developed, together with colleagues, three superposition cal-
culi: 𝜆fSup for 𝜆-free higher-order logic [15], 𝜆Sup for a higher-order logic with 𝜆-abstra-
ction but no Booleans [18], and 𝑜𝜆Sup for full higher-order logic [17]. These milestones al-
lowed us to carefully estimate how the increased reasoning capabilities of each calculus in-
fluence its performance. We also developed a complete and efficient unification algorithm
(Chapter 4) which can easily be customized to trade bits of its completeness for efficiency.
Practically oriented work, described in Chapters 5 and 6, helped us gauge how much rea-
soning power we lose by using more intuitive and more easily controllable incomplete
rules. Both the theoretical and the practical lines of our work met in this chapter, result-
ing in a prover that outperforms the competition on the benchmarks from proof assistants.

Extending first-order provers with higher-order reasoning capabilities has been at-
tempted by other researchers as well. Barbosa et al. extended the SMT solvers CVC4
(now cvc5) and veriT to higher-order logic in an incomplete way [11]. Bhayat and Reger
first extended Vampire to higher-order logic using combinatory unification [24], an in-
complete approach, before they designed and implemented a complete higher-order su-
perposition calculus based on SKBCI-combinators [25]. The advantage is that combinators
can be supported as a thin layer on top of 𝜆-free terms. This calculus is also implemented
in Zipperposition. However, in informal experiments, we found that 𝜆-superposition per-

7

146 Extending a Brainiac Prover to Higher-Order Logic

forms substantially better, corroborating the CASC results, so we decided to make a more
profound change to Ehoh and implement 𝜆-superposition.

Possibly the only actively maintained higher-order prover built from the bottom up
as a higher-order prover is Leo-III [153], as the long-time winner of CASC higher-order
division, Satallax [39], is no longer maintained. A further overview of other traditional
higher-order provers and the calculi they are based on can be found in Sect. 3.10.

7.7 Conclusion
In 2019, the reviewers of our paper introducing Ehoh [169] were skeptical that extending
it with support for full higher-order logic would be feasible. One of them wrote:

A potential criticism could be that this step from E to Ehoh is just extending
FOL by those aspects of HOL that are easily in reach with rather straightfor-
ward extensions (none of the extensions is indeed very complicated), and that
the difficult challenges of fully supporting HOL have yet to be confronted.

We ended up addressing the theoretical “difficult challenges” in otherworkwith colleagues.
In this chapter, we faced the practical challenges pertaining to the extension of Ehoh’s data
structures and algorithms to support full higher-order logic and demonstrated that such an
extension is possible. Our evaluation shows that this extension makes 𝜆E the best higher-
order prover on benchmarks coming from interactive theorem proving practice, which
was our goal. 𝜆E lags slightly behind Zipperposition on TPTP problems, possibly because
Zipperposition does not assume a clausal structure and can perform subtle formula-level
inferences. In the future, we plan to implement the same features in 𝜆E. We have also only
started tuning 𝜆E’s heuristics on higher-order problems.

8

147

8
SAT-Inspired Eliminations for

Superposition

Joint work with
Jasmin Blanchette and Marijn J.H. Heule

Optimized SAT solvers simplify the clause set not only during preprocessing, but they also
simplify it during solving. This interleaving of simplification and solving is called inprocess-
ing. Some preprocessing techniques have been generalized to first-order logic with equality.
In this chapter, we port inprocessing techniques to work with superposition, a leading first-
order proof calculus, and strengthen known preprocessing techniques. Specifically, we look
into elimination of hidden literals, variables (predicates), and blocked clauses. Our evalua-
tion using the Zipperposition prover confirms that the new techniques usefully supplement
the existing superposition machinery.

In this work I was the main designer of all the presented techniques. Marijn Heule did weekly supervision and
provided his knowledge of SAT solving to guide the design of all techniques. Jasmin Blanchette found the exact
conditions under which superposition remains complete when the predicate elimination rule is added to the
calculus. I also implemented and evaluated all the techniques.

8

148 SAT-Inspired Eliminations for Superposition

8.1 Introduction
Automated reasoning tools have become much more powerful in the last few decades,
thanks to procedures such as conflict-driven clause learning (CDCL) [112] for proposi-
tional logic and superposition for first-order logic with equality. However, the effective-
ness of these procedures crucially depends on how the input problem is represented as a
clause set. The clause set can be optimized beforehand (preprocessing) or during the exe-
cution of the procedure (inprocessing). In this chapter, we lift several preprocessing and
inprocessing techniques from propositional logic to clausal first-order logic, and demon-
strate their usefulness in a superposition prover.

For many years, SAT solvers have used inexpensive clause simplification techniques
such as hidden literal and hidden tautology elimination [76, 77] and failed literal detection
[66, Sect. 1.6]. We generalize these techniques to first-order logic with equality (Sect. 8.3).
Since the generalization involves reasoning about infinite sets of literals, we propose re-
strictions to make them usable.

Variable elimination, based on Davis–Putnam resolution [52], has been studied in the
context of both propositional logic [46, 155] and quantified Boolean formulas (QBFs) [26].
The basic idea is to resolve all clauses with negative occurrences of a propositional vari-
able (i.e., a nullary predicate symbol) against clauses with positive occurrences and delete
the parent clauses. Eén and Biere [59] refined the technique to identify a subset of clauses
that effectively define a variable and use it to further optimize the clause set. This latter
technique, variable elimination by substitution, has been an important preprocessor com-
ponent in many SAT solvers since its introduction in 2004.

Specializing second-order quantifier elimination [67, 128], Khasidashvili and Ko-
rovin [91] adapted variable elimination to preprocess first-order problems, yielding a
technique we call singular predicate elimination. We extend their work along two axes
(Sect. 8.4): We generalize Eén and Biere’s refinement to first-order logic, resulting in de-
fined predicate elimination, and explain how both types of predicate elimination can be
used during the proof search as inprocessing.

The last technique we study is blocked clause elimination (Sect. 8.5). It is used in both
SAT [85] and QBF solvers [27]. Its generalization to first-order logic has produced good
results when used as a preprocessor, especially on satisfiable problems [93]. We explore
more ways to use blocked clause elimination on satisfiable problems, including using it to
establish equisatisfiability with the empty clause set or as an inprocessing rule. Unfortu-
nately, we find that its use as inprocessing can compromise the refutational completeness
of superposition.

All techniques have been implemented in the Zipperposition prover (Sect. 8.6), allow-
ing us to ascertain their usefulness (Sect. 8.7). The best configuration solves 160 additional
problems on benchmarks consisting of all 13 495 first-order TPTP theorems [157]. The raw
experimental data are publicly available.¹

8.2 Preliminaries
Our setting is many-sorted (i.e., many-typed), first-order logic [68] with interpreted equal-
ity and a distinguished type (or sort) 𝑜. We introduced this logic in Sect. 2.2 and here we

¹https://doi.org/10.5281/zenodo.4552499

https://doi.org/10.5281/zenodo.4552499

8.3 Hidden-Literal-Based Elimination

8

149

use the same notation introduced in that section. We write f𝑖(𝑠) for the 𝑖-fold application
of an unary symbol f (e.g., f3(𝑥) = f(f(f(𝑥)))) and call nullary function symbols constants. In
this chapter, propositional variables (corresponding to predicate constants in first-order
logic) are written as x,y,p,q,…, while first-order free variables are written in lowercase as𝑥,𝑦,𝑧,….

We assume the notion of substitution introduced in Sect. 2.2. We extend the notation
by writing a substitution {𝑥1 ↦ 𝑡1,…,𝑥𝑛 ↦ 𝑡𝑛} shortly as {𝑥 ↦ 𝑡}. A substitution is a
variable renaming if it is a bijection from a set of variables to a set of variables. Iterated,𝑖-fold application of a nonidempotent application 𝜎 is denoted by 𝜎𝑖 .

As we are working with clausal logic, we assume the clausal structure as defined in
Sect. 2.4. In this section we use the uppercase letter 𝐿 to denote literals, as this is more
customary in the related literature for propositional logic. Recall that predicate literals
are encoded as (dis)equations with equality. To simplify the notation in this chapter we
write predicate literals in unencoded form: Positive literal 𝑠 ≈ ⊤⊤⊤ is written as 𝑠 and neg-
ative literal 𝑠 ≉ ⊤ is written as ¬𝑠. Literals 𝑠 ≈ 𝑡 where neither 𝑠 nor 𝑡 have the type 𝑜
are called functional. Given a literal 𝐿, we overload notation and write ¬𝐿 to denote its
complement. Clauses are often defined as sets of literals, but superposition needs multi-
sets; with multisets, an instance 𝜎(𝐶) always has the same number of literals as 𝐶 , a most
convenient property. Given a clause set 𝑁 , 𝑁↓2 denotes the subset of its binary clauses:𝑁↓2 = {𝐿1 ∨ 𝐿2 ∣ 𝐿1 ∨ 𝐿2 ∈ 𝑁 }.

We assume the natural extensions of domain, valuation, interpretation, and model (as
defined by Fitting [65]) from unsorted to many-sorted logic. We also assume the notion of
normal models from Sect. 2.2 (with corresponding notation) and extend it with the notion
of canonical models: A canonical model 𝒥 is a normal model such that for every element𝑑 in one of 𝒥 ’s domains there exists a ground term 𝑡 such that 𝒥 interprets 𝑡 as 𝑑 . We
also make use of Herbrand models and Herbrand’s theorem [65, Sect. 5.4]. In Herbrand
models the domain consists of all ground terms. These models have a useful property that
a formula is satisfiable if and only if it is satisfiable in an Herbrand model. Herbrand’s the-
orem states that every unsatisfiable clause set has (propositionally) unsatisfiable ground
instance. Canonical models generalize Herbrand models to first-order logic with equality.

All of the techniques described in this chapter are applied in the context of first-order
superposition which was introduced in Sect. 2.5. We reuse all the notions introduced in
this section and the corresponding notations.

8.3 Hidden-Literal-Based Elimination
In propositional logic, binary clauses from a clause set 𝑁 can be used to efficiently dis-
cover literals 𝐿,𝐿′ for which the implication 𝐿′ →→→𝐿 is entailed by 𝑁 ’s binary clauses—i.e.,𝑁↓2 ⊧ 𝐿′ →→→ 𝐿. Heule et al. [77] introduced the concept of hidden literals to capture such
implications.

Definition 8.1. Given a propositional literal 𝐿 and a propositional clause set 𝑁 , the set
of propositional hidden literals for 𝐿 and 𝑁 is HLp(𝐿,𝑁) = {𝐿′ ∣ 𝐿′ ↪∗

p 𝐿} ⧵ {𝐿}, where ↪p
is defined so that ¬𝐿1 ↪p 𝐿2 whenever 𝐿1 ∨ 𝐿2 ∈ 𝑁 . Moreover, HLp(𝐿1 ∨ ⋯ ∨ 𝐿𝑛,𝑁) =⋃𝑛𝑖=1HLp(𝐿𝑖 ,𝑁).

8

150 SAT-Inspired Eliminations for Superposition

Heule et al. used a definition based on a fixpoint computation, but our definition based
on the reflexive transitive closure ↪∗

p of ↪p is equivalent. Intuitively, a hidden literal
can be added to or removed from a clause without affecting its semantics in models of 𝑁 .
By eliminating hidden literals from 𝐶 , we simplify it. By adding hidden literals to 𝐶 , we
might get a tautology 𝐶′ (i.e., a valid clause: ⊧ 𝐶′), meaning that 𝑁↓2 ⊧ 𝐶 , thereby enabling
us to delete 𝐶 . Note that HLp(𝐿,𝑁) is finite for a finite 𝑁 .
Definition 8.2. Given 𝐿′ ∨ 𝐿 ∨ 𝐶 ∈ 𝑁 , if 𝐿′ ∈ HLp(𝐿,𝑁), hidden literal elimination (HLE)
replaces 𝑁 by (𝑁 ⧵ {𝐿′ ∨ 𝐿 ∨ 𝐶}) ∪ {𝐿 ∨ 𝐶}. Given 𝐶 ∈ 𝑁 , {𝐿1,…,𝐿𝑛} = HLp(𝐶,𝑁), and 𝐶′ =𝐶 ∨ 𝐿1 ∨ ⋯ ∨ 𝐿𝑛 , if 𝐶′ is a tautology, hidden tautology elimination (HTE) replaces 𝑁 by𝑁 ⧵ {𝐶}.
Theorem 8.3. The result of applying HLE or HTE to a clause set 𝑁 is equivalent to 𝑁 .

Proof. For HLE, if 𝐿′ ∈ HLp(𝐿,𝑁), 𝑁↓2 ⊧ ¬𝐿′ ∨ 𝐿. Then, subsumption resolution (a sound
rule that applies resolution followed by subsumption [8]) yields shortened clause 𝐿 ∨ 𝐶′
from Definition 8.2. For HTE, it can be shown that sets 𝑁 and 𝑁 ∪{𝐶′}⧵{𝐶} are equivalent
[77, Sect. 2.1]. As clause 𝐶′ is a tautology, 𝑁 and 𝑁 ⧵ {𝐶} are equivalent. !

We generalize hidden literals to first-order logic with equality by considering substi-
tutivity of variables as well as congruence of equality.
Definition 8.4. Given a literal 𝐿 and a clause set 𝑁 , the set of hidden literals for 𝐿 and 𝑁
is HL(𝐿,𝑁) = {𝐿′ ∣ 𝐿′ ↪∗ 𝐿}⧵ {𝐿}, where ↪ is defined so that:

1. 𝜎(¬𝐿′) ↪ 𝜎(𝐿) if 𝐿′ ∨ 𝐿 ∈ 𝑁 and 𝜎 is a substitution

2. 𝑠 ≈ 𝑡 ↪ 𝑢[𝑠] ≈ 𝑢[𝑡] for all terms 𝑠, 𝑡 and contexts 𝑢[]
3. 𝑢[𝑠] ≉ 𝑢[𝑡] ↪ 𝑠 ≉ 𝑡 for all terms 𝑠, 𝑡 and contexts 𝑢[]

Moreover, HL(𝐿1 ∨ ⋯ ∨ 𝐿𝑛,𝑁) = ⋃𝑛𝑖=1HL(𝐿𝑖 ,𝑁).
The generalized definition also enjoys the key property that 𝐿′ ∈ HL(𝐿,𝑁) implies𝑁↓2 ⊧ 𝐿′ →→→ 𝐿. However, HL(𝐿,𝑁) may be infinite even for predicate literals; for exam-

ple, p(f𝑖(𝑥)) ∈ HL(p(𝑥), {p(𝑥) ∨ ¬p(f(𝑥))}) for every 𝑖.
Based on Definition 8.4, we can generalize hidden literal elimination and support a

related technique: 𝐿′ ∨ 𝐿 ∨ 𝐶
HLE if 𝐿′ ∈ HL(𝐿,𝑁)𝐿 ∨ 𝐶𝐿 ∨ 𝐶

FLE if 𝐿′,¬𝐿′ ∈ HL(¬𝐿,𝑁)𝐶
Recall that double lines denote simplification rules (Sect. 2.5). The second rule is called
failed literal elimination, inspired by the SAT technique of asserting ¬𝐿 if 𝐿 is a failed literal
[66]. It is easy to see that rule HLE is sound. From 𝐿′ ∈HL(𝐿,𝑁) we have 𝑁 ⊧ 𝐿′ →→→𝐿 (i.e.,¬𝐿′ ∨ 𝐿). Performing subsumption resolution [8] between 𝐿′ ∨ 𝐿 ∨ 𝐶 and ¬𝐿′ ∨ 𝐿 yields the
conclusion, which is therefore entailed by 𝑁 . For FLE, the condition 𝐿′,¬𝐿′ ∈ HL(¬𝐿,𝑁)
means that 𝑁↓2 ⊧ {¬𝐿′ ∨ ¬𝐿, 𝐿′ ∨ ¬𝐿} ⊧ ¬𝐿.

8.3 Hidden-Literal-Based Elimination

8

151

Example 8.5. Consider the clause set 𝑁 = {p(𝑥) ∨ ¬p(f(𝑥)), p(f(f(𝑥))) ∨ a ≈ b} and the
clause 𝐶 = f(a) ≉ f(b) ∨ p(𝑥). The first clause in 𝑁 induces p(f(𝑥)) ↪ p(𝑥), p(f(f(𝑥))) ↪
p(f(𝑥)), and hence p(f(f(𝑥)))↪∗ p(𝑥). Together with the second clause in𝑁 , it can be used
to derive a ≉ b ↪∗ p(𝑥). Finally, using rule 3 of Definition 8.4, we derive f(a) ≉ f(b) ↪∗
p(𝑥)—that is, f(a) ≉ f(b) ∈HL(p(𝑥),𝑁). This allows us to remove 𝐶’s first literal using HLE.

Two special cases of HLE exploit equality congruence as embodied by conditions 2
and 3 of Definition 8.4 without requiring to compute the HL set:𝑠 ≈ 𝑡 ∨ 𝑢[𝑠] ≈ 𝑢[𝑡] ∨ 𝐶

CONGHLE+𝑢[𝑠] ≈ 𝑢[𝑡] ∨ 𝐶𝑠 ≉ 𝑡 ∨ 𝑢[𝑠] ≉ 𝑢[𝑡] ∨ 𝐶
CONGHLE−𝑠 ≉ 𝑡 ∨ 𝐶

Hidden literals can be combined with unit clauses 𝐿′ to remove more literals:𝐿′ 𝐿 ∨ 𝐶
UNITHLE if 𝜎(𝐿′) ∈ HL(¬𝐿,𝑁)𝐿′ 𝐶

Given a unit clause 𝐿′ ∈ 𝑁 , the rule uses 𝐿′ to discharge 𝜎(𝐿′) in 𝑁 ⊧ 𝜎(𝐿′)→→→ ¬𝐿. As a
result, we have 𝑁 ⊧ ¬𝐿, making it possible to remove 𝐿 from 𝐿 ∨ 𝐶 .

Example 8.6. Consider the clause set𝑁 = {p(𝑥) ∨ q(f(𝑥)), ¬q(f(a)) ∨ f(b) ≈ g(c), f(𝑥) ≉ g(𝑦)}
and the clause 𝐶 = ¬p(a) ∨ ¬q(b). The first clause in 𝑁 induces ¬q(f(a))↪ p(a), whereas
the second one induces f(b) ≉ g(c)↪ ¬q(f(a)). Thus, we have f(b) ≉ g(c)↪∗ p(a)—that is,
f(b) ≉ f(c) ∈ HL(p(a),𝑁). By applying the substitution {𝑥 ↦ b, 𝑦 ↦ c} to the third clause
in 𝑁 , we can fulfill the conditions of UNITHLE and remove 𝐶’s first literal.

Next, we generalize hidden tautologies to first-order logic.

Definition 8.7. A clause 𝐶 is a hidden tautology for a clause set 𝑁 if there exists a finite
set {𝐿1,…,𝐿𝑛} ⊆ HL(𝐶,𝑁) such that 𝐶 ∨ 𝐿1 ∨ ⋯ ∨ 𝐿𝑛 is a tautology.

Example 8.8. In general, hidden tautologies are not redundant and cannot be deleted
during saturation. Consider the unsatisfiable set 𝑁 = {¬a, ¬b, a ∨ c, b ∨ ¬c}, the order
a ≺ b ≺ c, and the empty selection function. The only possible superposition inference
from 𝑁 is between the last two clauses, yielding the hidden tautology a ∨ b (after simpli-
fying away ⊤ ≉ ⊤), which is entailed by the larger clauses a ∨ c and b ∨ ¬c. If this clause
is removed, the prover could enter an infinite loop, forever generating and deleting the
hidden tautology and never getting the opportunity to derive the empty clause.

In practice, most provers use a variant of the given clause procedure. Removing hidden
tautologies breaks the invariant of the procedure that all inferences between clauses in 𝒜
are redundant. The end result is not that the prover diverges, but that it terminates without
deriving the empty clause.

To observe this, assume the setting as in Example 8.8, and let 𝒫 = 𝑁 and 𝒜 = ∅. After
moving the first three clauses from𝒫 to𝒜 (𝒜 = {¬a,¬b,a ∨ c},𝒫 = {b ∨ ¬c}), no inferences

8

152 SAT-Inspired Eliminations for Superposition

are possible, and no new clauses are added to 𝒫 . After the last clause is moved to 𝒜 ,
the hidden tautology a ∨ b is produced. If it is deleted, the prover terminates with the
unsatisfiable set 𝒜 , but does not derive the empty clause.

To delete hidden tautologies during saturation, the prover could check that all the
relevant clause instances encountered along the computation of HL are ≺-smaller than
a given hidden tautology. However, this would be expensive and seldom succeed, given
that superposition creates lots of nonredundant hidden tautologies. Instead, we propose
to simplify hidden tautologies using the following rules:𝐿 ∨ 𝐿′ ∨ 𝐶

HTR if ¬𝐿′ ∈ HL(𝐿,𝑁) and 𝐶 ≠ ⊥𝐿 ∨ 𝐿′𝐿 ∨ 𝐶
FLR if 𝐿′,¬𝐿′ ∈ HL(𝐿,𝑁) and 𝐶 ≠ ⊥𝐿

We call these techniques hidden tautology reduction and failed literal reduction, respec-
tively. Both rules are sound. As with hidden literals, unit clauses 𝐿′ can be exploited:𝐿′ 𝐿 ∨ 𝐶

UNITHTR if 𝜎(𝐿′) ∈ HL(𝐿,𝑁) and 𝐶 ≠ ⊥𝐿′ 𝐿
We give the simplification rules above (for hidden literal elimination, hidden tautology

reduction, failed literal detection, and their variants) the collective name of hidden-literal-
based elimination (HLBE). Yet another use of hidden literals is for equivalent literal substi-
tution [76]: If both 𝐿′ ∈HL(𝐿,𝑁) and 𝐿 ∈HL(𝐿′,𝑁), we can often simplify 𝜎(𝐿′) to 𝜎(𝐿) in𝑁 if 𝜎(𝐿′) ≻ 𝜎(𝐿). We want to investigate this further.

Theorem 8.9. The rules HLE, FLE, CONGHLE+, CONGHLE−, UNITHLE, HTR, FLR, and
UNITHTR are sound simplification rules.

Proof. It is easy to see that the deleted premises are entailed by the conclusions that replace
them and that the conclusions’ instances are ≺-smaller than the premises’ instances, as
required by the redundancy criterion. It remains to check soundness.
CASE HLE: We have 𝑁 ,𝐿′ ⊧ 𝐿 by the side condition and must show 𝑁 ,𝐿′ ∨𝐿∨𝐶 ⊧ 𝐿∨𝐶 . Let𝒥 ⊧ 𝑁 ,𝐿′ ∨𝐿∨𝐶 . If 𝒥 ⊧ 𝐿′, then we also have 𝒥 ⊧ 𝐿 thanks to the side condition and hence𝒥 ⊧ 𝐿∨𝐶 . Otherwise, we have 𝒥 ⊧ 𝐿∨𝐶 , which is exactly what we need to show.
CASE FLE: We have 𝑁 , 𝐿 ⊧ 𝐿′ and 𝑁 ,𝐿 ⊧ ¬𝐿′ by the side condition. If 𝒥 ⊧ 𝑁 , 𝐿, then both𝒥 ⊧ 𝐿′ and 𝒥 ⊧ ¬𝐿′, an absurdity. Otherwise, we have 𝒥 ⊧ 𝐶 , as desired.
CASE CONGHLE+, CONGHLE−: Obvious by congruence of equality.
CASE UNITHLE: We have 𝑁 ,𝐿 ⊧ ¬𝜎(𝐿′) by the side condition. If 𝒥 ⊧ 𝑁 ,𝐿, then 𝑁 ⊧ ¬𝜎(𝐿′).
But since 𝐿′ ∈ 𝑁 , this is an absurdity. Otherwise, we have 𝒥 ⊧ 𝐶 , as desired.
CASE HTR: We have 𝑁 ,¬𝐿′ ⊧ 𝐿 by the side condition. If either 𝒥 ⊧ 𝐿 or 𝒥 ⊧ 𝐿′, the desired
result follows directly. Otherwise, from 𝒥 ⊧ ¬𝐿′ we also have 𝒥 ⊧ 𝐿 thanks to the side
condition, contradicting 𝒥 ⊧ ¬𝐿.

8.4 Predicate Elimination

8

153

CASE FLR: We have 𝑁 ,𝐿′ ⊧ 𝐿 and 𝑁 ,¬𝐿′ ⊧ 𝐿 by the side condition. Hence 𝑁 ⊧ 𝐿, as desired.
CASE UNITHTR: We have 𝑁 ,𝜎(𝐿′) ⊧ 𝐿. Since 𝐿′ ∈ 𝑁 , we have 𝑁 ⊧ 𝐿, as desired. !

8.4 Predicate Elimination
For propositional logic, variable elimination [59] is one of the main preprocessing and
inprocessing techniques. Following Gabbay and Ohlbach’s ideas [67], Khasidashvili and
Korovin [91] generalized variable elimination to first-order logic with equality and demon-
strated that it is effective as a preprocessor. We propose an improvement that makes this
applicable in more cases and show that, with a minor restriction, it can be integrated in a
superposition prover without compromising its refutational completeness.

8.4.1 Singular Predicates
Khasidashvili and Korovin’s preprocessing technique removes singular predicates (which
they call “non-self-referential predicates”) from the problem using so-called flat resolution.

Definition 8.10. A predicate symbol is called singular for a clause set 𝑁 if it occurs at
most once in every clause contained in 𝑁 .
Definition 8.11. Let 𝐶 = p(𝑠𝑛) ∨ 𝐶′ and 𝐷 = ¬p(𝑡𝑛) ∨ 𝐷′ be clauses with no variables in
common. The clause 𝑠1 ≉ 𝑡1 ∨ ⋯ ∨ 𝑠𝑛 ≉ 𝑡𝑛 ∨ 𝐶′ ∨ 𝐷′ is a flat resolvent of 𝐶 and 𝐷 on p.

Given two (possibly identical) clause sets 𝑀,𝑁 , predicate elimination iteratively re-
places clauses from 𝑁 containing the symbol p with all flat resolvents against clauses in𝑀 . Eventually, it yields a set with no occurrences of p.

Definition 8.12. Let 𝑀,𝑁 be clause sets and p be a singular predicate for 𝑀 . Let ! be
the following relation on clause set pairs and clause sets:

1. (𝑀, {(¬)p(𝑠) ∨ 𝐶′} ⊎𝑁)! (𝑀, 𝑁 ′ ∪𝑁) if 𝑁′ is the set that consists of all clauses (up
to variable renaming) that are flat resolvents with (¬)p(𝑠) ∨ 𝐶′ on p and a clause
from 𝑀 as premises. The premises’ variables are renamed apart.

2. (𝑀,𝑁)!𝑁 if 𝑁 has no occurrences of p.

The resolved set 𝑀⋊p𝑁 is the clause set 𝑁′ such that (𝑀,𝑁)!∗ 𝑁 ′.
Lemma 8.13. Let 𝑀,𝑁 be clause sets and p be a singular predicate for 𝑀 . The resolved set𝑁′ is reached in a finite number of ! steps, and it is unique up to variable renaming.

Proof. To show ! is terminating we use the following ordinal measure on clause sets:𝜈({𝐷1,…,𝐷𝑛}) = 𝜔𝜈(𝐷1) ⊕⋯⊕𝜔𝜈(𝐷𝑛), where 𝜈(𝐷) is the number of occurrences of p in 𝐷, 𝜔
is the first infinite ordinal, and ⊕ is the Hessenberg, or natural, sum, which is commutative.
For every transition (𝑀, {𝐶} ∪𝑁)! (𝑀,𝑁 ′ ∪𝑁), we have 𝜈({𝐶} ∪𝑁) > 𝜈(𝑁 ′ ∪𝑁) because𝜔𝜈(𝐶) > 𝜔𝜈(𝐶)−1 ⋅ |𝑁 ′|. Eventually, a state (𝑀,𝑁 ′) with 𝜈(𝑁 ′) = 𝜔0 ⋅ 𝑛 is reached. Then, we
apply the second rule of Definition 8.12 to obtain the resolved set 𝑁′.

8

154 SAT-Inspired Eliminations for Superposition

To show that 𝑁′ is unique, i.e.,! is confluent, it suffices to show (since! is terminat-
ing and Newmann’s lemma applies [5]) that! is locally confluent. In other words, when-
ever (𝑀,𝑁)! (𝑀,𝑁1) and (𝑀,𝑁)! (𝑀,𝑁2), there exists 𝑁′ such that (𝑀,𝑁1)! (𝑀,𝑁 ′)
and (𝑀,𝑁2)! (𝑀,𝑁 ′).

There are two main sources of nondeterminism of !: The choice of 𝐶 ∈ 𝑁 and the
choice of a literal in 𝐶 to act on. Let us focus on the choice of 𝐶 in 𝑁 ; the same discussion
applies for the choice of a literal in 𝐶 .

Let 𝑁 = {𝐶1} ⊎ {𝐶2} ⊎ 𝑁 ′, where 𝐶1 and 𝐶2 are clauses with occurrences of p. Then,(𝑀, {𝐶1} ⊎ {𝐶2 ∪ 𝑁 ′})! (𝑀,𝑁 ′1 ∪ {𝐶2 ∪ 𝑁 ′}) and (𝑀, {𝐶2} ⊎ {𝐶1 ∪ 𝑁 ′})! (𝑀,𝑁 ′2 ∪ {𝐶1 ∪ 𝑁 ′})
where 𝑁′1 and 𝑁′2 are sets of corresponding resolvents. Both ! steps can be joined (up to
variable renaming) to (𝑀,𝑁 ′1 ∪𝑁 ′2 ∪𝑁 ′), showing that ! is locally confluent. !

Next, it is useful to partition clause sets into subsets based on the presence and polarity
of a singular predicate.

Definition 8.14. Let 𝑁 be a clause set and p be a singular predicate for 𝑁 . Let 𝑁+
p consist

of all clauses of the form p(𝑠) ∨ 𝐶′ ∈ 𝑁 , let 𝑁−
p consist of all clauses of the form ¬p(𝑠) ∨𝐶′ ∈ 𝑁 , let 𝑁p = 𝑁+

p ∪𝑁−
p , and let 𝑁p = 𝑁 ⧵𝑁p.

Definition 8.15. Let 𝑁 be a clause set and p be a singular predicate for 𝑁 . Singular pred-
icate elimination (SPE) of p in 𝑁 replaces 𝑁 by 𝑁p ∪ (𝑁+

p ⋊p𝑁−
p).

The result of SPE is satisfiable if and only if 𝑁 is satisfiable [91, Theorem 1], justifying
SPE’s use in a preprocessor. However, eliminating singular predicates aggressively can
dramatically increase the number of clauses. To prevent this, Khasidashvili and Korovin
suggested to replace 𝑁 by 𝑁′ only if 𝜆(𝑁 ′) ≤ 𝜆(𝑁) and 𝜇(𝑁 ′) ≤ 𝜇(𝑁), where 𝜆(𝑁) is the
number of literals in 𝑁 and 𝜇(𝑁) is the sum for all clauses 𝐶 ∈ 𝑁 of the square of the
number of distinct variables in 𝐶 .

Compared with what modern SAT solvers use, this criterion is fairly restrictive. We
relax it to make it possible to eliminate more predicates, within reason. Let 𝐾tol ∈ ℕ be
a tolerance parameter. A predicate elimination step from 𝑁 to 𝑁′ is allowed if 𝜆(𝑁 ′) <𝜆(𝑁)+𝐾tol or 𝜇(𝑁 ′) < 𝜇(𝑁) or |𝑁 ′| < |𝑁 |+𝐾tol. Intuitively, we allow predicate elimination
even in the cases in which proof state increases in size, as long as we can control this
increase with the parameter 𝐾tol. A refinement, which we want to try out in future work,
would be to gradually increment the tolerance 𝐾tol, as is done in some SAT solvers.

8.4.2 Defined Predicates
SPE is effective, but an important refinement has not yet been adapted to first-order logic:
variable elimination by substitution. Eén and Biere [59] discovered that a propositional
variable x can be eliminated without computing all resolvents if it is expressible as an
equivalence x↔↔↔ 𝜑, where 𝜑, the “gate,” is an arbitrary formula that does not reference x.
They partition a set𝑁 of propositional clauses into a definition set𝐺, essentially the clausi-
fication of x↔↔↔𝜑, and 𝑅 = 𝑁p ⧵𝐺, the remaining clauses containing p. To eliminate x from𝑁 while preserving satisfiability, it suffices to resolve clauses from 𝐺 against clauses from𝑅, effectively substituting 𝜑 for x in 𝑅. Crucially, we do not need to resolve pairs of clauses
from 𝐺 or pairs of clauses from 𝑅. We generalize this idea to first-order logic.

8.4 Predicate Elimination

8

155

Definition 8.16. Let𝐺 be a clause set and p be a predicate symbol. The set𝐺 is a definition
set for p if

1. p is singular for 𝐺
2. 𝐺 consists of clauses of the form (¬)p(𝑥) ∨ 𝐶′ (up to variable renaming), where the

variables 𝑥 are distinct

3. the variables in 𝐶′ are all among p’s arguments 𝑥
4. all clauses in 𝐺+

p⋊p𝐺−
p are tautologies

5. 𝐸(c) is unsatisfiable, where the environment 𝐸(𝑥) consists of all subclauses 𝐶′ of
any (¬)p(𝑥) ∨𝐶′ ∈ 𝐺 and c is a tuple of distinct fresh constants substituted in for 𝑥

A definition set 𝐺 corresponds intuitively to a definition by cases in mathematics—e.g.,

p(𝑥) = {⊤ if 𝜑(𝑥)⊥ if 𝜓(𝑥)
Part 4 states that the case conditions are mutually exclusive (e.g., ¬𝜑(𝑥) ∨ ¬𝜓(𝑥)), and
part 5 states that they are exhaustive (e.g., ∄c. ¬𝜑(c) ∧ ¬𝜓(c)). Given a quantifier-free
formula p(𝑥) ↔↔↔ 𝜑(𝑥) with distinct variables 𝑥 such that 𝜑(𝑥) does not contain p, any
reasonable clausification algorithm would produce a definition set for p.

Example 8.17. Given the formula p(𝑥)↔↔↔ q(𝑥) ∧ (r(𝑥) ∨ s(𝑥)), a standard clausification
algorithm [126] produces {¬p(𝑥) ∨ q(𝑥), ¬p(𝑥) ∨ r(𝑥) ∨ s(𝑥), p(𝑥) ∨ ¬q(𝑥) ∨ ¬r(𝑥), p(𝑥) ∨¬q(𝑥) ∨ ¬s(𝑥)}, which qualifies as a definition set for p.

Definition sets generalize Eén and Biere’s gates. They can be recognized syntactically
for formulas such as p(𝑥)↔↔↔ ⋁𝑖 q𝑖(𝑠𝑖) or p(𝑥)↔↔↔ ⋀𝑖 q𝑖(𝑠𝑖), or semantically: Condition 4
can be checked using the congruence closure algorithm, and condition 5 amounts to a
propositional unsatisfiability check.

The key result about propositional gates carries over to definition sets.

Definition 8.18. Let 𝑁 be a clause set, p be a predicate symbol, 𝐺 ⊆ 𝑁 be a definition
set for p, and 𝑅 = 𝑁p ⧵ 𝐺. Defined predicate elimination (DPE) of p in 𝑁 replaces 𝑁 by𝑁p ∪ (𝐺⋊p 𝑅).
Lemma 8.19. Let 𝑁(𝑥) be a clause set such that the variables of all clauses in it are among
the argument 𝑛-tuple 𝑥 , and let c be an 𝑛-tuple of distinct fresh constants. If 𝑁(c) (i.e.,{𝑥 ↦ c}(𝑁 (𝑥))) is unsatisfiable, then for every interpretation 𝒥 and valuation 𝜉 , 𝒥 ⊭𝜉 𝑁 .

Proof. We show the contrapositive. Assume that for some 𝒥 and 𝜉 , 𝒥 ⊧𝜉 𝑁 (𝑥). Then let𝒥 ′ be a model that assigns each c𝑖 the interpretation of 𝑥𝑖 under 𝒥 and 𝜉 , and otherwise
coincides with 𝒥 . We obtain 𝒥 ′ ⊧ 𝑁 (c). !

Lemma 8.20. Let 𝐺 be a definition set for p and 𝑁 be an arbitrary clause set. If (𝐺,𝑁)!(𝐺,𝑁 ′), then 𝐺 ∪𝑁 and 𝐺 ∪𝑁 ′ are equivalent.

8

156 SAT-Inspired Eliminations for Superposition

Proof. Since flat resolution is sound, the nontrivial direction is to show that a model 𝒥 of
the set 𝐺 ∪𝑁 ′ is also a model of 𝐺 ∪𝑁 . As the only clause in 𝑁 ⧵𝑁 ′ is 𝐶 = (¬)p(𝑠𝑛) ∨ 𝐶′
on which the ! step is performed, we must show 𝒥 ⊧ 𝐶 .

Without loss of generality, we assume that the leading literal of 𝐶 is positive (i.e., 𝐶 is
of the form p(𝑠𝑛) ∨ 𝐶′). Towards a contradiction, assume 𝜉 is a valuation such that 𝒥 ⊭𝜉 𝐶 .
Then, 𝒥 ⊭𝜉 p(𝑠𝑛). Consider an arbitrary clause 𝐷 = p(𝑥𝑛) ∨ 𝐷′ ∈ 𝐺+

p and a valuation 𝜉 ′,
which assigns each 𝑥𝑖 the interpretation of 𝑠𝑖 under 𝒥 and 𝜉 . As 𝒥 ⊭𝜉′ p(𝑥𝑛) and 𝒥 ⊧ 𝐺,
then𝒥 ⊧𝜉 ′ 𝐷′ for every such clause𝐷. However, by part 5 of Definition 8.16 and by Lemma
8.19, 𝒥 ⊭𝜉′ 𝐸(𝑥𝑛), where 𝐸(𝑥𝑛) is the environment associated with the definition set 𝐺.
Therefore, there must exist a clause 𝐷 = ¬p(𝑥𝑛) ∨ 𝐷′ in 𝐺−

p such that 𝒥 ⊭𝜉 𝐷′.
Now consider the flat resolvent of 𝐶 and 𝐷 on p: 𝑅 = 𝑥1 ≉ 𝑠1 ∨ ⋯ ∨ 𝑥𝑛 ≉ 𝑠𝑛 ∨ 𝐶′ ∨ 𝐷′.

Let 𝜁 be a valuation coinciding with 𝜉 on the variables of 𝐶 and with 𝜉 ′ on 𝑥𝑛 . Clearly,𝒥 ⊭𝜁 𝑅. Yet, 𝑅 ∈ 𝑁 ′, and as 𝒥 ⊧ 𝑁 ′, we reach a contradiction. !

Lemma 8.21. Let 𝐺 be a definition set for p and 𝑁 be a clause set with no occurrences of p.
Then 𝐺 ∪𝑁 is satisfiable if and only if 𝑁 is satisfiable.

Proof. The nontrivial direction is to show that if 𝑁 is satisfiable, 𝐺 ∪𝑁 is as well. Let 𝒥 be
a model of 𝑁 . We construct a model 𝒥 ′ of 𝐺 over the same universe as 𝒥 . For any atom𝐴 such that p does not occur in 𝐴 and for every 𝜉 , we set 𝒥 ′ ⊧𝜉 𝐴 if and only if 𝒥 ⊧𝜉 𝐴.
For any clause p(𝑥𝑛) ∨ 𝐶′ ∈ 𝐺 and any assignment 𝜉 such that 𝒥 ⊭𝜉 𝐶′, we define 𝒥 ′ so
that 𝒥 ′ ⊧𝜉 p(𝑥𝑛). By construction, 𝒥 ′ ⊧ 𝐺+

p ∪𝑁 . It remains to show that 𝒥 ′ ⊧ 𝐺−.
Let 𝐶 = ¬p(𝑥𝑛) ∨ 𝐶′ ∈ 𝐺 and let 𝜉 be an arbitrary assignment. Towards a contradiction,

assume 𝒥 ′ ⊭𝜉 𝐶 , and consequently 𝒥 ′ ⊧𝜉 p(𝑥𝑛). By construction of 𝒥 ′, there exists a
clause p(𝑦𝑛) ∨ 𝐷′ ∈ 𝐺 and an assignment 𝜉 ′ which assigns each 𝑦𝑖 the value of 𝜉 (𝑥𝑖) such
that 𝒥 ⊭𝜉′ 𝐷′. The resolvent 𝑅 = 𝑥1 ≉ 𝑦1 ∨⋯∨𝑥𝑛 ≉ 𝑦𝑛 ∨𝐶′ ∨𝐷′ is a tautology, according to
condition 4 of Definition 8.16. However, for a valuation that behaves like 𝜉 on 𝑥 and 𝜉 ′
on 𝑦 , 𝒥 ′ does not satisfy 𝑅 ∈ 𝑁 , contradicting our assumption. !

Theorem 8.22. The result of applying DPE to a clause set 𝑁 is satisfiable if and only if 𝑁 is
satisfiable.

Proof. Let p be a predicate symbol and 𝐺 ⊆ 𝑁 be the definition set used by DPE, and let𝑅 = 𝑁p ⧵𝐺.
Using Lemma 8.13, we get that there is a derivation (𝐺,𝑅)!𝑛 (𝐺,𝑅′)!𝑅′. Applying

Lemma 8.20 𝑛 times, we get that 𝐺 ∪𝑅 is equivalent to 𝐺 ∪𝑅′. Finally, Lemma 8.21 gives
us the desired result. !

Since there will typically be at most only a few defined predicates in the problem, it
makes sense to fall back on SPE when no definition is found.

Definition 8.23. Let 𝑁 be a clause set and p be a predicate symbol. If there exists a
definition set 𝐺 ⊆ 𝑁 for p, portfolio predicate elimination (PPE) on p in 𝑁 replaces 𝑁
with 𝑁p ∪ (𝐺⋊p 𝑅), where 𝑅 = 𝑁p ⧵ 𝐺. Otherwise, if p is singular in 𝑁 , it results in𝑁p ∪ (𝑁+

p ⋊p𝑁−
p). In all other cases, it is not applicable.

8.4 Predicate Elimination

8

157

8.4.3 Refutational Completeness
Hidden-literal-based techniques fit within the traditional framework of saturation, be-
cause they delete or reduce a clause based on the presence of other clauses. In contrast,
predicate elimination relies on the absence of clauses from the proof state. We can still inte-
grate it with superposition as follows: At every 𝑘th iteration of the given clause procedure,
perform predicate elimination on 𝒜 ∪𝒫 , and add all new clauses to 𝒫 .

One may wonder whether such an approach preserves the refutational completeness
of the calculus. The answer is no.

To see why, consider the following binary splitting rule based on Riazanov and Voro-
nkov [139]: 𝐶 ∨ 𝐷

BS
p ∨ 𝐶 𝐷 ∨ ¬p

Provisos: 𝐶 and 𝐷 have no free variables in common, p is fresh, and p is ≺-smaller than𝐶 and 𝐷. Since the conclusions are smaller than the premise, the rule can be applied
aggressively as a simplification. But notice that the effect of splitting can be undone by
singular predicate elimination, possibly giving rise to loops BS,SPE,BS,SPE,… . Clearly,
we need to curtail predicate elimination.

Under which conditions is predicate elimination refutationally complete? To answer
this question, we employ the saturation framework of Waldmann, Tourret, Robillard, and
Blanchette [171]. Let (FInf,Red) be the base calculus without predicate elimination—e.g.,
resolution or superposition inferences together with the standard redundancy criterion [8,
Sect. 4.2]. The inference system FInf is a set of inferences (𝐶𝑛,…,𝐶1,𝐶0), for 𝑛 ≥ 1, where𝐶𝑛,…,𝐶1 are the premises and 𝐶0 is the conclusion. 𝐶1 is called the main premise. The
redundancy criterion is a pair Red = (RedI,RedF) where RedI determines which inferences
can be omitted and RedF is used to remove clauses.

Next, consider an abstract proving process working on a single clause set. Let #Red
denote the transition relation that supports (1) adding arbitrary clauses and (2) removing
clauses deemed useless by RedF. Typically, the added clauses are the result of performing
inferences and are entailed by the premises, but other clauses can be added as well. A
#Red-derivation is a finite or infinite sequence of clause sets 𝑁0#Red𝑁1#Red⋯.

We fix a finite setP of predicate symbols thatmay be subjected to predicate elimination.
These might include all the predicate symbols occurring in the input problem, but exclude
any symbols introduced by splitting or other rules. Given a clause or clause set𝑁 , wewrite
P(𝑁) to denote the set of all predicate symbols from P occurring in 𝑁 . Let #P denote the
elimination of a singular or defined predicate symbol from P. A mixed derivation consists
of transitions either of the form 𝑁 #P𝑁′ or of the form 𝑁 #Red 𝑁′ where P(𝑁) ⊇ P(𝑁 ′).
Because P is finite, any mixed derivation consists of at most finitely many#P-transitions.
Hence, in any derivation, there exists an index 𝑘 from which all transitions are standard
#Red-transitions.

This suggests the following path to completeness: Pretend that the transitions between𝑁0 and𝑁𝑘 aremerely preprocessing and start the actual derivation at𝑁𝑘 . This works at the
abstract level of derivations on single clause sets. It fails, however, for an actual saturation
prover that distinguishes between passive and active clauses.

8

158 SAT-Inspired Eliminations for Superposition

Example 8.24. The counterexample below is based on the given clause prover GC from
the saturation framework. It shows how predicate elimination can break GC’s key invari-
ant, which states that all inferences between active clauses are redundant. Breaking the
invariant means that the limit might be unsaturated, breaking the refutational complete-
ness proof.

We use superposition with the order a ≺ b ≺ c ≺ d and without selection. Assume a ∈ P
and suppose we start with the satisfiable clause set¬a ∨ d ¬a ∨ ¬d a ∨ b ∨ c c ∨ d b ∨ ¬d
where gray boxes mark maximal (i.e., eligible) literals. Suppose the prover makes c ∨ d
and b ∨ ¬d active. From these two clauses, a superposition inference 𝜄 could derive the
conclusion b ∨ c. However, the three passive clauses are ≺-smaller than 𝜄’s main premise
b ∨ ¬d and collectively entail 𝜄’s conclusion. This means that 𝜄 is redundant and can be
ignored.

If the prover now eliminates the predicate a using SPE, the passive set is reduced to{b ∨ c ∨ d, b ∨ c ∨ ¬d}. Either clause is subsumed by an active clause, so the prover deletes
it. It stops with the active set {c ∨ d, b ∨ ¬d}, which is unsaturated because 𝜄 is no longer
redundant. The invariant is broken.

Example 8.25. In Example 8.24, the initial clause set was satisfiable. If it is unsatisfiable,
we can even lose refutational completeness. To see why, we add the unit clauses ¬b and ¬c
to the initial clause set of Example 8.24 to make it unsatisfiable. We repeat the same steps
as above, including the subsumptions at the end, yielding the passive set {¬b , ¬c } and
the active set {c ∨ d , b ∨ ¬d }. Then, making ¬b and ¬c active triggers no inferences. The
prover stops with an unsatisfiable four-clause active set that does not contain the empty
clause.

A solution could be to move all active clauses to the passive set at step 𝑘 or later, but
this would be costly, since it would force the prover to redo inferences whose conclusions
might then have to be simplified or subsumed again. Instead, we salvage the existing com-
pleteness proof for GC, by resolving the issues concerning splitting and the GC invariant.
Our approach is to weaken the redundancy criterion slightly, enough both to disable split-
ting on P-predicates and to ensure that inferences such as 𝜄 in Examples 8.24 and 8.25 are
performed. The required weakening is so mild that it does not invalidate any practical
simplification or subsumption techniques we are aware of, except of course splitting.

In accordance with the saturation framework, let F be the set of first-order Σ-clauses,
let G be its ground subset, and let G be a function that maps an F-clause to the set of its
G-clause instances and analogously for F-inferences. We define an extension G♭ of G forΣ♭-clauses in an ad hoc nonclassical logic reminiscent of paraconsistent logics [43]. The
objective is to disallow the entailment that makes splitting and Examples 8.24 and 8.25
possible. The signature Σ♭ extends Σ with a distinguished predicate symbol ⊥ that is in-
terpreted differently from ⊤. For Σ♭, the Boolean type 𝑜 may be interpreted as any set of
cardinality at least 2.

Definition 8.26. The operator ♭ translates Σ-literals to Σ♭-literals as follows, where p ∈ P,
q ∉ P, and 𝑠, 𝑡 are non-Boolean terms:

8.4 Predicate Elimination

8

159

p(𝑡)♭ = p(𝑡) ≉ ⊥ q(𝑡)♭ = q(𝑡) ≈ ⊤ (𝑠 ≈ 𝑡)♭ = 𝑠 ≈ 𝑡¬p(𝑡)♭ = p(𝑡) ≉ ⊤ ¬q(𝑡)♭ = q(𝑡) ≉ ⊤ (𝑠 ≉ 𝑡)♭ = 𝑠 ≉ 𝑡
The operator is lifted elementwise to G-clauses and G-clause sets. The weak entailment⊧♭ over G-clause sets is defined via an encoding into Σ♭-clauses: 𝑀 ⊧♭ 𝑁 if and only if𝑀♭ ⊧ 𝑁♭. The lifting to F-clauses and F-clause set is achieved in the standard way via
grounding.

The following property of weak entailment will allow us to eliminate P-predicates
without losing completeness:

Lemma 8.27. Let 𝐶 be a clause that contains the predicate symbol p ∈ P and 𝐷 be a clause
that does not contain p. If 𝑁 ∪ {𝐶} ⊧♭ {𝐷}, then 𝑁 ⊧♭ {𝐷}.
Proof. Suppose 𝒥 ⊧ 𝑁♭. We will define 𝒥 ′ so that 𝒥 ′ ⊧ 𝑁 ♭ ∪ {𝐶♭}, retrieve 𝒥 ′ ⊧ 𝐷♭, and
then argue that 𝒥 ⊧ 𝐷♭. We take 𝒥 ′ to coincide with 𝒥 except that we extend the domain
for 𝑜 with one fresh value and use this value as the interpretation of p(𝑡) for all argument
tuples 𝑡 . This modification makes any p literal of 𝐶♭ true, and it preserves the truth of 𝑁♭.
By the hypothesis, 𝒥 ′ ⊧ 𝐷♭. And since p does not occur in 𝐷, we have 𝒥 ⊧ 𝐷♭. !

Note that the above lemma does not hold for classical entailment ⊧; indeed, {p ∨ q, ¬p ∨
q} ⊧ {q} yet {p ∨ q} ⊭ {q}. On the other hand, the law of excluded middle does hold for weak
entailment: ⊧♭ p ∨ ¬p. In fact, all classical clausal tautologies are tautologies for ⊧♭.

The standard redundancy criterion Red is obtained by lifting a criterion on G-clauses
to F-clauses. The same construction can be replicated using ⊧♭ instead of ⊧, yielding the
weak redundancy criterion Red♭. It is easy to check that the usual simplification techniques
implemented in superposition provers can be justified using Red♭. Specifically, this con-
cerns the following rules described by Schulz [143, Sects. 2.3.1 and 2.3.2]: deletion of dupli-
cated literals, deletion of resolved literals, syntactic tautology deletion, semantic tautology
deletion, rewriting of negative literals, positive simplify-reflect, negative simplify-reflect,
clause subsumption, and equality subsumption. Moreover, rewriting of positive literals is
possible if the rewriting clause is smaller than the rewritten clause (a condition that is also
needed with ⊧ but omitted by Schulz to allow more aggressive application of this useful
rule). Finally, destructive equality resolution cannot be justified with ⊧, let alone ⊧♭.

We instantiate the saturation framework with (FInf,Red♭) to obtain a given clause
prover GC. The prover operates on sets of labeled clauses (𝐶, 𝑙), where 𝐶 is a standard
clause and 𝑙 ∈ L is a label. The active label identifies active clauses; all other clauses are
passive. The prover takes the form of two rules, PROCESS and INFER, restricted to prevent
the introduction of P-predicates. We extend it with a third rule, PREDELIM, for predicate
elimination, and call the extended prover GCP. The rules are as follows, using again the
framework notations:

PROCESS N ∪M ⟹GCP N ∪M ′
where M ⊆ LRed♭,⊐F (N ∪M ′), M ′↓active = ∅, and
P(⌊M ′⌋) ⊆ P(⌊N ∪M ⌋)

INFER N ∪ {(𝐶, 𝑙)} ⟹GCP N ∪ {(𝐶,active)} ∪M
where 𝑙 ≠ active, M ↓active = ∅,

8

160 SAT-Inspired Eliminations for Superposition

FInf(⌊N ↓active⌋, {𝐶}) ⊆ Red♭I ∩G (⌊N ⌋ ∪ {𝐶} ∪ ⌊M ⌋), and
P(⌊M ⌋) ⊆ P(⌊N ⌋ ∪ {𝐶})

PREDELIM N ∪M ⟹GCP N ∪M ′
where N ∪M #P N ∪M ′ and M ′↓active = ∅

Here is a summary of the main framework notations:

• The letters M ,N range over sets of labeled clauses. M ↓𝑙 denotes the subset of
clauses in M labeled with 𝑙. The operator ⌊ ⌋ erases all labels in a labeled clause
or clause set.

• FInf(𝑁) denotes the set of all base calculus inferences with premises in 𝑁 , and
FInf(𝑁 ,𝑀) = FInf(𝑁 ∪𝑀) ⧵ FInf(𝑁 ⧵𝑀). The same notations are also available for
the straightforward extension FLInf of FInf with labels.

• LRed♭,⊐ is the extension of the standard redundancy criterion Red♭ defined using ⊧♭
to nonground labeled clauses with subsumption (⊏).

• Given a sequence (N 𝑖)𝑖 , its limit (inferior) is N ∞ = ⋃𝑖 ⋂𝑗≥𝑖 N 𝑗 .
The completeness proof follows the invariance-based argument found in the article by

Waldmann et al. [172] about the saturation framework.

Lemma 8.28. Every ⟹GCP-derivation is a mixed derivation.

Proof. The cases for PROCESS and INFER are almost as inWaldmann et al., with adjustments
to show that P-predicates cannot appear from nowhere. The case for ELIMPRED is trivial.

!

Let Inv♭N (𝑘) denote the condition FLInf(N 𝑘↓active) ⊆ LRed♭I (N 𝑘). Notice the difference
with the definition of the key invariant InvN in the saturation framework, whose right-
hand side is ⋃𝑘𝑖=0RedLI (N 𝑖). We cannot use the big union ⋃ starting at 𝑖 = 0 because we
will need to truncate a sequence prefix of an a priori unknown length. The argument will
still work thanks to monotonicity properties of the redundancy criteria.

Lemma 8.29. Let (N 𝑖)𝑖 be a ⟹GCP-derivation. If N 0↓active = ∅, then Inv♭N (𝑘) holds for
all indices 𝑘.
Proof. The base case is as in Waldmann et al.

For PROCESS and INFER, the proof is essentially as in Waldmann et al., except that we
also need to show that LRed♭I (N 𝑘) ⊆ LRed♭I (N 𝑘+1). This is a consequence of N 𝑘 #LRed♭,⊐
N 𝑘+1 and of properties (R2) and (R3) of redundancy criteria.

A new case to consider is that of a PREDELIM transition N 𝑘 ⟹GCP N 𝑘+1. Let
N 𝑘 = N ∪ M ⟹GCP N ∪ M ′ = N 𝑘+1, where N ∪ M #P N ∩ M ′ and M ′↓active = ∅. We
assume without loss of generality that M ∩ M ′ = ∅. Let p be the eliminated predicate.
Note that p occurs in every clause in M but in none of the clauses in N or M ′. We
must show FLInf(N 𝑘+1↓active) ⊆ LRed♭I (N 𝑘+1). As for PROCESS, we have the inclusion

8.4 Predicate Elimination

8

161

FLInf(N 𝑘+1↓active) ⊆ FLInf(N 𝑘↓active), by the side condition that M ′↓active = ∅. More-
over, by the induction hypothesis, FLInf(N 𝑘↓active) ⊆ LRed♭I (N 𝑘). Thus, FLInf(N 𝑘↓active) ⊆
LRed♭I (N ∪M).

Let 𝜄 ∈ FLInf(N ↓active). By the argument above, we have 𝜄 ∈ LRed♭I (N ∪M). We must
show 𝜄 ∈ LRed♭I (N ∪M ′). By definition of LRed♭I , it suffices to show that for every ground
instance (𝐶𝑛,…,𝐶1,𝐶0) of 𝜄, there exists a finite clause set D ⊆ G(N) ∪ G(M ′) that is ≺-
smaller than𝐶1 and such that {𝐶𝑛,…,𝐶2}∪D ⊧♭ {𝐶0}. Without loss of generality, we assume
that D is the ≺-smallest such set; such a set exists because ≺ is well founded.

By definition of N , p cannot occur in 𝐶0. By Lemma 8.27, if p occurred in 𝐷 ∈ D ,
we could remove 𝐷, but this would mean D is not minimal. As a result, D cannot con-
tain clauses from G(M) and hence D ⊆ G(N). Thus, 𝜄 ∈ LRed♭I (N). By property (R2) of
redundancy criteria, we have the desired result: 𝜄 ∈ LRed♭I (N ∪M ′). !

Lemma 8.30. Let (N 𝑖)𝑖 be a #LRed♭,⊐ -derivation. If Inv♭N (𝑖) holds for all indices 𝑖, then
FLInf(N ∞↓active) ⊆ ⋃𝑖 LRed♭I (N 𝑖) holds.
Proof. We assume 𝜄 ∈ FLInf(N ∞↓active) and show 𝜄 ∈ ⋃𝑖 LRed♭I (N 𝑖) for some arbitrary 𝜄.
For 𝜄 to belong to FLInf(N ∞↓active), all of its finitely many premises must be in N ∞↓active.
Therefore, there must exist an index 𝑘 such that N 𝑘↓active contains all of them, and there-
fore 𝜄 ∈ FLInf(N 𝑘↓active). Since InvN (𝑘) holds, 𝜄 ∈ LRed♭I (N 𝑘). Hence, 𝜄 ∈⋃𝑖 LRed♭I (N 𝑖). !
Lemma 8.31. Let (N 𝑖)𝑖 be a ⟹GCP-derivation. If N 0↓active = ∅ and N ∞↓𝑙 = ∅ for every
label 𝑙 ≠ active, then there exists an index 𝑘 such that (N 𝑘+𝑖)𝑖 is a fair #LRed♭,⊐ -derivation.
Proof. By Lemma 8.28, there must exist an index 𝑘 such that the sequence (N 𝑘+𝑖)𝑖 is a
pure #LRed♭,⊐-derivation. By Lemma 8.29, Inv♭N (𝑘 + 𝑖) holds for all indices 𝑖. Hence, by
Lemma 8.30, FLInf(N ∞↓active) ⊆ ⋃𝑖 LRed♭I (N 𝑘+𝑖). By the second hypothesis, this inclusion
simplifies to FLInf(N ∞) ⊆ ⋃𝑖 LRed♭I (N 𝑘+𝑖). !

Theorem 8.32. Let (N 𝑖)𝑖 be a ⟹GCP-derivation with N 0↓active = ∅ and N ∞↓𝑙 = ∅ for
every label 𝑙 ≠ active. If ⌊N 0⌋ is unsatisfiable, then some N 𝑖 contains the empty clause with
some arbitrary label.

Proof. By Lemma 8.31, we know that there exists an index 𝑘 such that (N 𝑘+𝑖)𝑖 is a fair
#LRed♭,⊐-derivation. Moreover, since #LRed♭,⊐ and #P preserve unsatisfiability (by (R1)
of redundancy criteria, Khasidashvili and Korovin’s Theorem 1, and our Theorem 8.22),
we have that ⌊N 𝑘⌋ is unsatisfiable. Since the base calculus (FLInf,LRed) is assumed to
be statically refutationally complete with respect to ⊧, the calculus (FLInf,LRed♭) with
a weaker redundancy criterion is also statically complete with respect to ⊧, and by the
saturation framework, (FLInf,LRed♭,⊐) preserves this. Exploiting the equivalence of static
and dynamic completeness (Lemmas 10 and 11 in Waldmann et al. [172]), we conclude
that some N 𝑘+𝑖 must contain a labeled empty clause. !

8

162 SAT-Inspired Eliminations for Superposition

8.5 Satisfiability by Clause Elimination
The main approaches to show satisfiability of a first-order problem are to produce either
a finite Herbrand model or a saturated clause set. Saturations rarely occur except for very
small problems or within decidable fragments. In this section, we explore an alternative
approach that establishes satisfiability by iteratively removing clauses while preserving
unsatisfiability, until the clause set has been transformed into the empty set. So far, this
technique has been studied only for QBF [75]. We show that blocked clause elimination
(BCE) can be used for this purpose. It can efficiently solve some problems for which the
saturated set would be infinite. However, it can break the refutational completeness of a
saturation prover. We conclude with a procedure that transforms a finite Herbrand model
into a sequence of clause elimination steps ending in the empty clause set, thereby demon-
strating the theoretical power of clause elimination.

Kiesl et al. [93] generalized blocked clause elimination to first-order logic. Their gener-
alization uses flat 𝐿-resolvents, an extension of flat resolvents that resolves a single literal 𝐿
against 𝑚 literals of the other clause.

Definition 8.33. Let 𝐶 = 𝐿 ∨ 𝐶′ and 𝐷 = 𝐿1 ∨ ⋯ ∨ 𝐿𝑚 ∨ 𝐷′, where

1. 𝑚 ≥ 1
2. the literals 𝐿𝑖 are of opposite polarity to 𝐿
3. 𝐿’s atom is p(𝑠𝑛)
4. 𝐿𝑖 ’s atom is p(𝑡𝑖) for each 𝑖
5. 𝐶 and 𝐷 have no variables in common

The clause (⋁𝑚𝑖=1⋁𝑛𝑗=1 𝑠𝑗 ≉ 𝑡𝑖𝑗) ∨ 𝐶′ ∨ 𝐷′ is a flat 𝐿-resolvent of 𝐶 and 𝐷.

Definition 8.34. Let 𝐶 = 𝐿 ∨ 𝐶′ be a clause and 𝑁 be a clause set. Let 𝑁′ consist of all
clauses from 𝑁 ⧵ {𝐶} with their variables renamed so that they share no variables with 𝐶 .
The clause 𝐶 is (equality-)blocked by 𝐿 in the set 𝑁 if all flat 𝐿-resolvents between 𝐶 and
clauses in 𝑁′ are tautologies.

Removing a blocked clause from a set preserves unsatisfiability [93]. Kiesl et al. eval-
uated the effect of removing all blocked clauses as a preprocessing step and found that it
increases the prover’s success rate.

In fact, there exist satisfiable problems that cannot be saturated in finitely many steps
regardless of the calculus’s parameters but that can be reduced to an empty, vacuously
satisfiable problem through blocked clause elimination.

Example 8.35. Consider the clause set 𝑁 consisting of 𝐶 = p(𝑥,𝑥) and 𝐷 = ¬p(𝑦1,𝑦3) ∨
p(𝑦1,𝑦2) ∨ p(𝑦2,𝑦3). Note that if no literal is selected, all literals can take part in super-
position inferences (i.e., they are eligible), as literals in clause 𝐷 are ≻-uncomparable.
In particular, the superposition of p(𝑥,𝑥) into 𝐷’s negative literal eventually needs to
be performed regardless of the chosen selection function or term order, with the con-
clusion 𝐸1 = p(𝑧1, 𝑧2) ∨ p(𝑧2, 𝑧1). Then, superposition of 𝐸1 into 𝐷 yields 𝐸2 = p(𝑧1, 𝑧2) ∨
p(𝑧2, 𝑧3) ∨ p(𝑧3, 𝑧1). Repeating this process yields infinitely many clauses 𝐸𝑖 = p(𝑧1, 𝑧2) ∨

8.5 Satisfiability by Clause Elimination

8

163

⋯ ∨ p(𝑧𝑖 , 𝑧𝑖+1) ∨ p(𝑧𝑖+1, 𝑧1) that cannot be eliminated using standard redundancy-based
techniques.

In the example above, the clause 𝐷 is blocked by its second or third literal. If we delete𝐷, 𝐶 becomes blocked in turn. Deleting 𝐶 leaves us with the empty set, which is vacuously
satisfiable. The example suggests that using BCE during saturation might help focus the
proof search. Indeed, Kiesl et al. ended their investigations by asking whether BCE can
be used as an inprocessing technique in a saturation prover. Unfortunately, in general the
answer is no:

Example 8.36. Consider the unsatisfiable set 𝑁 = {𝐶1,…,𝐶6}, where𝐶1 = ¬c ∨ e ∨ ¬a 𝐶2 = ¬c ∨ ¬e 𝐶3 = b ∨ c𝐶4 = ¬b ∨ ¬c 𝐶5 = a ∨ b 𝐶6 = c ∨ ¬b
Assume the simplification ordering a ≺ b ≺ c ≺ d ≺ e and the selection function that chooses
the last negative literal of a clause as presented. Gray boxes indicate literals that can take
part in superposition inferences. Only two superposition inferences are possible: from𝐶3 into 𝐶4, yielding the tautology 𝐶7 = b ∨ ¬b , and from 𝐶5 into 𝐶6, yielding 𝐶8 = a ∨
c . Clause 𝐶7 is clearly redundant, whereas 𝐶8 is blocked by its first literal. If we allow
removing blocked clauses, the prover enters a loop: 𝐶8 is repeatedly generated and deleted.
Thus, the prover will never generate the empty clause for this unsatisfiable set.

As with hidden tautologies, removing blocked clauses breaks the invariant of the given
clause procedure that all inferences between clauses in 𝒜 are redundant. To see this,
assume the setting of Example 8.36, and let 𝒫 = 𝑁 and 𝒜 = ∅. Assume 𝐶1,𝐶2,𝐶3 are
moved to the active set. As there are no possible inferences between them, the proof state
becomes 𝒜 = {𝐶1,𝐶2,𝐶3} and 𝒫 = {𝐶4,𝐶5,𝐶6}. After 𝐶4 is moved to 𝒜 , the conclusion 𝐶7
is computed, but it is not added to 𝒫 as it is redundant. Moving 𝐶5 to 𝒜 produces no
new conclusions, but after 𝐶6 is moved, 𝐶8 is produced. However, if we allow eliminating
blocked clauses, it will not be added to𝒫 as it is blocked. The prover then terminates with𝒜 = 𝑁 and 𝒫 = ∅, even though the original set 𝑁 is unsatisfiable.

Although using BCE as inprocessing breaks the completeness of superposition in gen-
eral, it is conceivable that a well-behaved fragment of BCE might exist. This could be
investigated further.

Not only can BCE prevent infinite saturation (Example 8.35), but it can also be used to
convert a finite Herbrand model into a certificate of clause set satisfiability (i.e., an object
that carries the checkable proof of satisfiability). The certificate uses only blocked clause
elimination and addition, in conjunction with a transformation to reduce the clause set to
an empty set. This theoretical result explores the relationship between Herbrand models
and satisfiability certificates based on clause elimination and addition. It is conceivable
that it can form the basis of an efficient way to certify Herbrand models.

In propositional logic, asymmetric literals can be added to or removed from clauses,
retaining the equivalence of the resulting clause set with the original one. Kiesl and
Suda [92] described an extension of this technique to first-order logic. Their definition
of asymmetric literals can be relaxed to allow the addition of more literals, but the result-
ing set is then only equisatisfiable to the original one, not equivalent. This in turn allows

8

164 SAT-Inspired Eliminations for Superposition

us to show that a problem is satisfiable by reducing it to an empty problem, as is done in
some SAT solvers.

For the rest of this section, we work with clausal first-order logic without equality.
We use Herbrand models as canonical representatives of first-order models, recalling that
every satisfiable set has a Herbrand model [65, Sect. 5.4].

Definition 8.37. A literal 𝐿 is a global asymmetric literal (GAL) for a clause 𝐶 and a clause
set 𝑁 if for every ground instance 𝜎(𝐶) of 𝐶 , there exists a ground instance 𝜚(𝐷) ∨ 𝜚(𝐿′)
of 𝐷 ∨ 𝐿′ ∈ 𝑁 ⧵ {𝐶} such that 𝜚(𝐷) ⊆ 𝜎(𝐶) and 𝜚(¬𝐿′) = 𝜎(𝐿).

Every asymmetric literal is GAL, but the converse does not hold:

Example 8.38. Consider a clause 𝐶 = p(𝑥,𝑦) and a clause set 𝑁 = {q ∨ p(a,a)}. Then, ¬q
is not an asymmetric literal for 𝐶 and 𝑁 , but it is a GAL for 𝐶 and 𝑁 .

Adding and removing GALs preserves and reflects satisfiability:

Theorem 8.39. If 𝐿 is a GAL for the clause 𝐶 and the clause set 𝑁 , then the set (𝑁 ⧵ {𝐶}) ∪{𝐶 ∨ 𝐿} is satisfiable if and only if 𝑁 is satisfiable.

Proof. Let 𝑁′ = 𝑁 ⧵{𝐶}∪{𝐶 ∨ 𝐿}. The nontrivial direction is to prove that if 𝑁′ has a model,
so does𝑁 . If𝑁′ has a model, it has an Herbrand model𝒥 . Clearly, 𝒥 satisfies every clause
in 𝑁 , with the possible exception of 𝐶 . Assume that there exists a grounding substitution𝜎 such that ground instance 𝜎(𝐶) is falsified by 𝒥 . Since 𝐿 is a GAL for 𝐶 and 𝑁 , then
there exists a clause 𝐷 ∨ 𝐿′ ∈ 𝑁 ′, and a grounding substitution 𝜏 such that 𝜏(𝐷) ⊆ 𝜎(𝐶) and𝜏(¬𝐿′) = 𝜎(𝐿). If 𝒥 ⊧ 𝜏(𝐿′), for 𝜎(𝐶) ∨ 𝜎(𝐿) to be satisfied by 𝒥 (as 𝐶 ∨ 𝐿 ∈ 𝑁 ′), some literal
in 𝜎(𝐶)must be satisfied by 𝒥 , contradicting that 𝜎(𝐶) is falsified by 𝒥 . If 𝒥 ⊭ 𝜏(𝐿′), then
some literal in 𝜏(𝐷) must be satisfied. Since 𝜏(𝐷) ⊆ 𝜎(𝐶), we get the same contradiction.
Therefore, 𝒥 satisfies 𝑁 , as needed. !

For first-order logic without equality, a clause 𝐿 ∨ 𝐶 is blocked if all its 𝐿-resolvents are
tautologies [93]. The 𝐿-resolvent between 𝐿 ∨ 𝐶 and ¬𝐿1 ∨ ⋯ ∨ ¬𝐿𝑛 ∨ 𝐷 (renamed apart) is𝜎(𝐶 ∨ 𝐷), where 𝜎 is the MGU of the literals 𝐿,𝐿1,…,𝐿𝑛 . Given a Herbrand model 𝒥 of a
clause set 𝑁 , the following procedure removes all clauses while preserving satisfiability:

1. Let q be a fresh predicate symbol. For each atom p(𝑠) in the Herbrand universe: If𝒥 ⊧ p(𝑠), add the clause q ∨ p(𝑠); otherwise, add q ∨ ¬p(𝑠). Adding either clause
preserves satisfiability as both are blocked by q.

2. Since 𝒥 is a model, for each ground instance 𝜎(𝐶), there exists a clause q ∨ 𝐿 with𝐿 ∈ 𝜎(𝐶). We can transform 𝐶 ∈ 𝑁 into 𝐶 ∨ ¬q, since ¬q is a GAL for 𝐶 and 𝑁 .

3. Consider the clause q ∨ 𝐿 added by step 1. Since 𝐿 is ground and no clause q ∨ ¬𝐿
was added (since 𝒥 is a model), the only 𝐿-resolvents are against clauses added by
step 2. Since all of those clauses contain ¬q, the resolvents are tautologies. Thus,
each q ∨ 𝐿 is blocked and can be removed in turn.

4. The remaining clauses all contain the literal ¬q. They can be removed by BCE as
well.

8.6 Implementation

8

165

The procedure is limited to first-order logic without equality, since step 3 is justified
only if 𝐿 is a predicate literal. (Otherwise, 𝐿 cannot block clause q ∨ 𝐿 [93].) The procedure
also terminates only for finite Herbrand models.

Example 8.40. Consider the satisfiable clause set 𝑁 = {r(𝑥) ∨ s(𝑥), ¬r(a), ¬s(b)} and a
Herbrand model 𝒥 over {a,b, r,s} such that r(b) and s(a) are the only true atoms in 𝒥 . We
show how to remove all clauses in 𝑁 using 𝒥 by following the procedure above.

Let 𝑁𝒥 = {q ∨ ¬r(a), q ∨ r(b), q ∨ s(a), q ∨ ¬s(b)}. We set 𝑁 ← 𝑁 ∪𝑁𝒥 . This preserves
satisfiability since all clauses in 𝑁𝒥 are blocked. It is easy to check that ¬q is GAL for
every clause in 𝑁 ⧵𝑁𝒥 . The only substitutions that need to be considered are {𝑥 ↦ a} and{𝑥 ↦ b} for r(𝑥) ∨ s(𝑥). So we set 𝑁 ← {¬q ∨ r(𝑥) ∨ s(𝑥), ¬q ∨ ¬r(a), ¬q ∨ ¬s(b)} ∪ 𝑁𝒥 .
Clearly, all clauses in 𝑁𝒥 are blocked, so we set 𝑁 ←𝑁 ⧵𝑁𝒥 . All clauses remaining in 𝑁
have a literal ¬q and can be removed, leaving 𝑁 empty as desired.

8.6 Implementation
Hidden-literal-based elimination, predicate elimination, and blocked clause elimination
all admit efficient implementations in a superposition prover. In this section, we describe
how to implement the first two sets of techniques. For BCE, we refer to Kiesl et al. [93].
All techniques have been implemented in the Zipperposition prover.

Hidden-Literal-Based Elimination For HLBE, an efficient representation of HL(𝐿,𝑁)
is crucial. Because this set may be infinite, we underapproximate it by restricting the
length of the transitive chains via a parameter 𝐾len. Given the current clause set 𝑁 , the
finite map Imp[𝐿′] associates with each literal 𝐿′ a set of pairs (𝐿,𝑀) such that 𝐿′ ↪𝑘 𝐿,
where 𝑘 ≤ 𝐾len and𝑀 is the multiset of clauses used to derive 𝐿′ ↪𝑘 𝐿. Moreover, we con-
sider only transitions of type 1 (as per Definition 8.4). The following algorithm maintains
Imp dynamically, updating it as the prover derives and deletes clauses. It depends on the
global variable Imp and the parameters 𝐾len and 𝐾imp.

procedure ADDIMPLICATION(𝐿a, 𝐿c, 𝐶)
if Imp[𝜎(𝐿a)] ≠ ∅ for some renaming 𝜎 then(𝐿a, 𝐿c) ← (𝜎(𝐿a),𝜎(𝐿c))
if there are no 𝐿,𝐿′,𝑀,𝜎 such that (𝐿′,𝑀) ∈ Imp[𝐿], 𝜎(𝐿) = 𝐿a, and 𝜎(𝐿′) = 𝐿c then

5 for all (𝜎 ,𝑀) such that (𝜎(𝐿c),𝑀) ∈ Imp[𝜎(𝐿a)] do
erase all (𝐿′,𝑀′) such that 𝑀 ⊆ 𝑀′ from Imp[𝜎(𝐿a)]

for all 𝐿 such that (𝐿′,𝑀) ∈ Imp[𝐿] and 𝜎(𝐿a) = 𝐿′ for some 𝜎 do
if |𝑀| < 𝐾len then
Imp[𝐿] ← Imp[𝐿] ∪ {(𝜎(𝐿c),𝑀 ⊎ {𝐶})}

10 for all 𝐿 such that Imp[𝐿] ≠ ∅ and 𝜎(𝐿) = 𝐿c for some 𝜎 do
Concl ← {(𝜎(𝐿′),𝑀 ⊎ {C}) ∣ (𝐿′,𝑀) ∈ Imp[𝐿], |𝑀| < 𝐾len}
Imp[𝐿a] ← Imp[𝐿a] ∪Concl

Congr ← {(𝑠 ≉ 𝑡, {𝐶}) ∣ ∃𝑢.𝐿c = 𝑢[𝑠] ≉ 𝑢[𝑡]}
Imp[𝐿a] ← Imp[𝐿a] ∪ {(𝐿c, {𝐶})} ∪Congr

8

166 SAT-Inspired Eliminations for Superposition

15 procedure TRACKCLAUSE(𝐶)
if 𝐶 = 𝐿1 ∨ 𝐿2 then
ADDIMPLICATION(¬𝐿1, 𝐿2, 𝐶)
ADDIMPLICATION(¬𝐿2, 𝐿1, 𝐶)
if 𝐿2 = 𝜎(¬𝐿1) for some nonidempotent 𝜎 then

20 for all 𝑖 ← 1 to 𝐾imp do𝐿2 ← 𝜎(𝐿2)
ADDIMPLICATION(¬𝐿1, 𝐿2, 𝐶)

procedure UNTRACKCLAUSE(𝐶)
for all 𝐿a, 𝐿c,𝑀 such that (𝐿c,𝑀) ∈ Imp[𝐿a] do

25 if 𝐶 ∈ 𝑀 then
erase (𝐿c,𝑀) from Imp[𝐿a]

Thealgorithm views a clause 𝐿 ∨ 𝐿′ as two implications¬𝐿→→→𝐿′ and¬𝐿′→→→𝐿. It stores
only one entry for all literals equal up to variable renaming (line 2). Each implication𝐿a →→→𝐿c represented by the clause is stored only if its generalization is not present in Imp
(line 4). Conversely, all instances of the implication are removed (line 5).

Next, the algorithm finds each implication stored in Imp that can be linked to 𝐿a →→→𝐿c:
Either 𝐿c becomes the new consequent (line 7) or 𝐿a becomes the new antecedent (line 10).
If 𝐿c can be decomposed into 𝑢[𝑠] ≉ 𝑢[𝑡], rule 3 of Definition 8.4 allows us to store 𝑠 ≉ 𝑡 in
Imp[𝐿a] (line 14). This is an exception to the idea that transitive chains should use only
rule 1. The application of rule 3 does not count toward the bound 𝐾len. If 𝐿a is of the
form 𝑢[𝑠] ≈ 𝑢[𝑡], then Imp could be extended so that Imp[𝑠 ≈ 𝑡] = Imp[𝐿a], but this would
substantially increase Imp’s memory footprint.

In first-order logic, different instances of the same clause can be used along a tran-
sitive chain. For example, the clause 𝐶 = ¬p(𝑥) ∨ p(f(𝑥)) induces p(𝑥) ↪𝑖 p(f𝑖(𝑥)) for
all 𝑖. The algorithm discovers such self-implications (line 19): For each clause 𝐶 of the
form ¬𝐿 ∨ 𝜎(𝐿), where 𝜎 is some nonidempotent substitution, the pairs (𝜎2(𝐿), {𝐶}),…,(𝜎𝐾imp+1(𝐿), {𝐶}) are added to Imp[𝐿], where 𝐾imp is a parameter.

To track and untrack clauses efficiently, we implement the mapping Imp as a non-
perfect discrimination tree [134]. Given a query literal 𝐿, this indexing data structure
efficiently finds all literals 𝐿′ such that for some 𝜎 , 𝜎(𝐿′) = 𝐿 and Imp[𝐿′] ≠ ∅. We can
use it to optimize all lookups except the one on line 7. For this remaining lookup, we
add an index Imp−1 that inverts Imp, i.e., Imp−1[𝐿] = {𝐿′ ∣ Imp[𝐿′] = (𝐿,𝑀) for some 𝑀}. To
avoid sequentially going through all entries in Impwhen the prover deletes them, for each
clause 𝐶 we keep track of each literal 𝐿 such that 𝐶 appears in Imp[𝐿]. Finally, we limit the
number of entries stored in Imp[𝐿] – by default, up to 48 pairs in each Imp[𝐿] are stored.

To implement the HLE rule, we use Imp[𝐿] as follows: Given a clause 𝐶 = 𝐿 ∨ 𝐿′ ∨ 𝐶′,
if there are two literals 𝐿1,𝐿2 and a substitution 𝜎 such that (𝐿2,𝑀) ∈ Imp[𝐿1], 𝐶 ∉ 𝑀 ,𝜎(𝐿1) = 𝐿, and 𝜎(𝐿2) = 𝐿′, we remove 𝐿 from𝐶 . Literal 𝐿 can also be removed if 𝜎(𝐿1) = ¬𝐿′
and 𝜎(𝐿2) = ¬𝐿. Rule HTR is implemented analogously.

The UNITHTR rule relies on maintaining the index Unit, which is built as follows.
Whenever the prover derives a unit clause 𝐶 = {𝐿}, we find all entries 𝐿a in Imp such
that 𝐿a and 𝐿 are unifiable with the MGU 𝜎 . Then, we set Unit ← Unit∪ {(𝜎(𝐿c),𝑀 ∪ {𝐶}) ∣(𝐿c,𝑀) ∈ Imp[𝐿a]}. Given a clause 𝐿 ∨ 𝐶′, we apply UNITHLE by looking for (𝐿′,𝑀) ∈ Unit

8.6 Implementation

8

167

such that 𝜎(𝐿′) = ¬𝐿, for some substitution 𝜎 ; we apply UNITHTR by looking for 𝐿′ such
that 𝜎(𝐿′) = 𝐿. The sets stored together with literals in Unit are used for building the
proof object and to remove literals from Unit once a clause from the given set becomes
redundant.

The same data structure is used for supporting FLE and FLR. When (𝐿′,𝑀) is added to
Imp[𝐿], we check whether (¬𝐿′,𝑀′) ∈ Imp[𝐿] for some 𝑀′. If so, (¬𝐿,𝑀 ∪𝑀′) is added to
Unit.

In propositional logic, the conventional approach constructs the binary implication
graph for the clause set 𝑁 [77], with edges (¬𝐿,𝐿′) and (¬𝐿′,𝐿) whenever 𝐿 ∨ 𝐿′ ∈ 𝑁 . To
avoid traversing the graph repeatedly, solvers rely on timestamps to discover connections
between literals. This relies on syntactic literal comparisons, which is very fast in propo-
sitional logic but not in first-order logic, because of substitutions and congruence.

Predicate Elimination To implement portfolio predicate elimination, we maintain a
record for each predicate symbol p occurring in the problem with the following fields: the
set of definition clauses for p, the set of nondefinition clauses in which p occurs once, and
the set of clauses in which p occurs more than once. These records are kept in a priority
queue, prioritized by properties such as the presence of definition sets and the number of
estimated resolutions. If p is the highest-priority symbol that is eligible for SPE or DPE,
we eliminate it by removing all the clauses stored in p’s record from the proof state and
by adding flat resolvents to the passive set. Eliminating a symbol might make another
symbol eligible.

As an optimization, predicate elimination keeps track only of symbols that appear at
most 𝐾occ times in the clause set. For inprocessing, we use signals that the prover emits
whenever a clause is added to or removed from the proof state and update the records. At
the beginning of the 1st, (𝐾iter +1)st, (2𝐾iter +1)st, … iteration of the given clause proce-
dure’s loop body, predicate elimination is systematically applied to the entire proof state.
The first application of inprocessing amounts to preprocessing. After some informal exper-
iments, we chose 𝐾occ = 512 and 𝐾iter = 10 as default values. The analogous optimization
and limits apply for blocked clause elimination.

The most important novel aspect of our predicate elimination implementation is rec-
ognizing the definition clauses for a symbol p in a clause set 𝑁 , which is performed as
follows, assuming 𝑥 is a fixed tuple of distinct free variables:

1. Let 𝐺 = {𝐶 ∣ 𝐶 = (¬)p(𝑦) ∨ 𝐶′,𝐶 ∈ 𝑁 , no variable repeats in 𝑦 , and the variables of𝐶′ are all among 𝑦}. If 𝐺 is empty, report failure; otherwise, continue.

2. Rename all clauses in 𝐺 so that their only variables are 𝑥 .
3. Let ⌊𝑎⌋ be a function that assigns a propositional variable to each atom 𝑎. This func-

tion is lifted to literals by assigning ⌊¬𝑎⌋ = ¬𝑥 if ⌊𝑎⌋ = 𝑥 , and to clauses pointwise.
Furthermore, let 𝐸 = {⌊𝐶′⌋ ∣ (¬)p(𝑥) ∨ 𝐶′ ∈ 𝐺}. If 𝐸 is satisfiable, report failure. Oth-
erwise, let 𝐸′ be an unsatisfiable core of 𝐸 and𝐺′ the set of corresponding first-order
clauses and continue.

4. If all resolvents in 𝐺′
p⋊p𝐺′¬p are tautologies, then 𝐺′ is a definition set for symbol

p. Otherwise, report failure.

8

168 SAT-Inspired Eliminations for Superposition

The invalidity of set 𝐸 from step 3 is checked using a SAT solver, which is already
integrated in Zipperposition. As modern theorem provers (including E and Vampire) also
use SAT solvers, this definition set recognition method can easily be implemented in those
provers as well.

During experimentation, we noticed that recognizing definitions of symbols that occur
in the conjecture often harms performance. Thus, Zipperposition recognizes definitions
only for the remaining symbols.

8.7 Evaluation
We measure the impact of our elimination techniques for various values of their param-
eters. As a baseline, we use Zipperposition’s first-order portfolio mode, which runs the
prover in 13 configurations of heuristic parameters in consecutive time slices. None of
these configurations use our new techniques. To evaluate a given parameter value, we fix
it across all 13 configurations and compare the results with the baseline.

The benchmark set consists of all 13 495 CNF and FOF TPTP 7.3.0 theorems [157]. The
experiments were carried out on StarExec servers [154] equipped with Intel Xeon E5-2609
CPUs clocked at 2.40 GHz. The portfolio mode uses a single CPU core with a CPU time
limit of 180 s. The base configuration solves 7897 problems. The values in the tables in-
dicate the number of problems solved minus 7897. Thus, positive numbers indicate gains
over the baseline. The best result is shown in bold.

Hidden-Literal-Based Elimination The first experiments use all implemented HLBE
rules. To avoid overburdening Zipperposition, we can enable an option to limit the number
of tracked clauses for hidden literals. Once the limit has been reached, any request for
tracking a clause will be rejected until a tracked clause is deleted. We can choose which
kind of clauses are tracked: only clauses from the active set 𝒜 , only clauses from the
passive set 𝒫 , or both. We also vary the maximal implication chain length 𝐾len and the
number of computed self-implications 𝐾imp.

In Zipperposition, every lookup for instances or generalizations of 𝑠 ≈ 𝑡 must be done
once for each orientation of the equation. To avoid this inefficiency, and also because
the implementation of hidden literals does not fully exploit congruence, we can disable
tracking clauses with at least one functional literal. Clauses containing functional literals
can then still be simplified.

Figures 8.1 and 8.2 show the results, without and with functional literal tracking en-
abled, for 𝐾len = 2 and 𝐾imp = 0. The columns specify different limits on the number of
tracked clauses, with ∞ denoting that no limit is imposed. The rows represent different
kinds of tracked clauses. The results suggest that tracking functional literals is not worth
the effort but that tracking predicate literals is. The best improvement is observed when
both active and passive clauses are tracked. Normally DISCOUNT-loop provers [4] such
as Zipperposition do not simplify active clauses using passive clauses, but here we see
that this can be effective. Figure 8.3 shows the impact of varying 𝐾len and 𝐾imp, when 500
clauses from the entire proof state are tracked. These results suggest that computing long
implication chains is counterproductive.

8.7 Evaluation

8

169

Tracked clauses250 500 1000 ∞
Active −14 −16 −8 −12
Passive +7 +10 +5 −35
Both +12 +10 +7 −45

Figure 8.1: Impact of the number and kinds of tracked
clauses on HLBE performance, when only predicate
literals are tracked

Tracked clauses250 500 1000 ∞
Active −10 −14 −8 −18
Passive −5 −5 −14 −71
Both +2 −1 −8 −79

Figure 8.2: Impact of the number and kinds of
tracked clauses on HLBE performance, when all lit-
erals are tracked

Chain length 𝐾len1 2 4 8𝐾imp = 0 +9 +10 +7 +5𝐾imp = 1 +5 +11 +7 +4𝐾imp = 2 +6 +11 +8 +8
Figure 8.3: Impact of the parameters 𝐾len and 𝐾imp on HLBE performance

Relaxed with 𝐾tol
K&K 0 25 50 100 200

SPE preprocessing +70 +117 +154 +160 +154 +158
PPE preprocessing +71 +124 +160 +164 +165 +162

Figure 8.4: Impact of the choice of criterion on predicate elimination performance

Predicate and Blocked Clause Elimination For defined predicate elimination, the
number of resolvents grows exponentially with the number of occurrences of p. To avoid
this expensive computation, we limit the applicability of PPE to proof states for which
p is singular. According to our informal experiments, full PPE, without this restriction,
generally performs less well.

Predicate elimination can be done using Khasidashvili and Korovin’s criterion (K&K)
or using our relaxed criterion with different values of 𝐾tol. Figure 8.4 shows the results
for SPE and PPE used as preprocessors. Our numbers corroborate Khasidashvili and Ko-
rovin’s findings: SPE with K&K proves 70 more problems than the base, a 0.9% increase,
comparable to the 1.8% they observe when they combine SPE with additional preprocess-
ing. Remarkably, the number of additional proved problems more than doubles when we
use our criterion with 𝐾tol > 0, for both SPE and PPE.

Although this is not evident in Figure 8.4, varying 𝐾tol substantially changes the set
of problems solved. For example, when 𝐾tol = 0, SPE proves 60 theorems not proved using𝐾tol = 50. The effect weakens as 𝐾tol grows. When 𝐾tol = 100, SPE proves only 13 problems
not found when 𝐾tol = 200. Similarly, the set of problems proved by SPE and PPE differs:
When 𝐾tol = 25, 14 problems are proved by PPE but missed by SPE. Recognizing definition
sets is useful: PPE outperforms SPE regardless of the criterion.

Performing BCE and variable elimination until fixpoint increases the performance of

8

170 SAT-Inspired Eliminations for Superposition

HLBE
SPE PPE +PPE

BCE SPE +BCE PPE +BCE +BCE

Preprocessing +30 +154 +159 +160 +166 +162
Inprocessing −48 +140 +127 +146 +131 +127

Figure 8.5: Performance of predicate and blocked clause elimination

HLBE
SPE PPE +PPE

BCE SPE +BCE PPE +BCE +BCE

Preprocessing +29 +46 +60 +47 +59 +55
Figure 8.6: Performance of predicate and blocked clause elimination for establishing satisfiability

SAT solvers [85]. We can check whether the same holds for superposition provers. In this
experiment, we use the relaxed criterion with 𝐾tol = 25 and HLBE which tracks up to 500
clauses from any clause set, 𝐾len = 2, and𝐾imp = 0. We use each technique as preprocessing
and inprocessing.

The results are summarized in Figure 8.5, where the + sign denotes the combination of
techniques. We confirm the results obtained by Kiesl et al. about the performance of BCE
as preprocessing: It helps prove 30 more problems from our benchmark set, increasing
the success rate by roughly 0.4%. The same percentage increase was obtained by Kiesl et
al. Using BCE as inprocessing, however, hurts performance, presumably because of its
incompatibility with the redundancy criterion.

For preprocessing, the combinations SPE+BCE and PPE+BCE performed roughly on
a par with SPE and PPE, respectively. This stands in contrast to the situation with SAT
solvers, where such a combination usually helps. It is also worth noting that the inpro-
cessing techniques never outperform their preprocessing counterparts. The last column
shows that combining HLBE with other elimination techniques overburdens the prover.

Satisfiability by Blocked Clause Elimination Kiesl et al. found that blocked clause
elimination is especially effective on satisfiable problems. To corroborate their results and
ascertain whether a combination of predicate elimination and blocked clause elimination
increases the success rate, we evaluate BCE on all 2273 satisfiable TPTP FOF and CNF
problems. The hardware and CPU time limits are the same as in the experiments above.
Figure 8.6 presents the results.

The baseline establishes the satisfiability of 856 problems. We consider only prepro-
cessing techniques, since BCE compromises refutational completeness—a saturation does
not guarantee that the original problem is satisfiable. We note that recognizing definition
sets makes almost no difference on satisfiable problems. The sets of problems solved by
BCE and PPE differ—30 problems are solved by BCE and not by PPE.

8.8 Discussion and Related Work

8

171

8.8 Discussion and RelatedWork
We briefly surveyed related work in Sect. 8.1. In this section, we give a more detailed
overview and further discuss connections with related work.

The research presented in this chapter is two-pronged. For SAT elimination techniques
already generalized to preprocess first-order problems, we looked for ways to interleave
them with the given clause procedure of a superposition prover, as inprocessing. For
techniques that had not yet been ported to first-order logic, we looked for generalizations
that allow both preprocessing and inprocessing.

Hidden tautology elimination was first described by Heule et al. [76]. A better imple-
mentation that also supports hidden literal elimination was later described by the same
group of authors [77]. We generalized the underlying theoretical concepts to first-order
logic, and provided an efficient way to deal with the infinite number of hidden literals
that arise with this generalization. More efficient graph-based techniques are yet to be
explored.

Variable elimination, based on Davis–Putnam resolution [52], has been studied in the
context of both propositional logic [46, 155] and QBF [26]. It was generalized to first-order
logic (as a preprocessor) by Khasidashvili and Korovin [91], yielding a technique called
predicate elimination. An improvement of variable elimination, that uses formula defini-
tion information, has been popularized as a preprocessing and inprocessing technique for
CDCL solvers by Eén and Biere [59]. We generalized this improvement to first-order logic
and combined it with Khasidashvili and Korovin’s approach. With tolerable restrictions,
this extension can be used as an inprocessing technique. In SAT and QBF, it was ob-
served that allowing variable elimination to slightly increase the clause set size improves
performance [27]. We implemented a similar approach, achieving double the number of
additional proofs found compared to more restrictive approaches.

Blocked clause elimination is used in both SAT [85] and QBF solvers [27]. Its general-
ization to first-order logic [93] has showed positive effects when used as a preprocessor.
We showed that blocked clauses cannot be removed during saturation, but that they can
be effectively used to show satisfiability of the clause set. A combination of blocked clause
elimination and variable elimination performs well in propositional logic [85], but we ob-
served no comparable improvement when their generalizations are combined.

Our general approach is one ofmanyways to combine ideas from SAT solving and first-
order proving. Other noteworthy architectures that either incorporate a SAT solver or that
generalize the CDCL calculus include DPLL(𝑇) with quantifier instantiation [10, 121, 138],
DPLL(Γ + 𝑇) [36], labeled splitting [63], AVATAR [167], MCSAT [120], CDSAT [35], and
SGGS [37].

8.9 Conclusion
We adapted several preprocessing and inprocessing elimination techniques implemented
in modern SAT solvers so that they work in a superposition prover. This involved lifting
the techniques to first-order logic with equality but also tailoring them to work in tandem
with superposition and its redundancy criterion. Although SAT solvers and superposition
provers embody radically different philosophies, we found that the lifted SAT techniques
provide valuable optimizations.

8

172 SAT-Inspired Eliminations for Superposition

We see several avenues for future work. First, the implementation of hidden liter-
als could be extended to exploit equality congruence. Second, although blocked clause
elimination is generally incomplete as an inprocessing technique, we hope to achieve
refutational completeness for a substantial fragment of it. Third, predicate and blocked
clause elimination, which thrive on the absence of clauses from the proof state, could be
enhanced by tagging and ignoring generated clauses that have not yet been used to sub-
sume or simplify untagged clauses. Fourth, predicate and blocked clause elimination could
be extended to work with functional literals. Fifth, more SAT techniques could be adapted,
including bounded variable addition [111] and blocked clause addition [101]. Sixth, the
techniques we covered could be adapted to work with other first-order calculi, or gener-
alized further to work with higher-order calculi such as combinatory superposition [25]
and 𝑜𝜆Sup.

9

173

9
Conclusion and Future Work

As this thesis is brought to an end, I would like to use these last pages to reflect not only on
the work I did in the last four years, but also on the many bumps on the road that I did not
get to describe in the preceding chapters. When it comes to reflections, the performance
art piece Rhythm 10, performed byMarina Abramović, one of the greatest Yugoslav artists,
comes to my mind. The themes that it explores such as taking risks and the inevitability
of making mistakes were the root of fears and doubts that I was slowly overcoming over
the last four years. The photograph on the cover of this thesis was taken when it was first
performed, in Edinburgh, in 1973. The instructions for the performance read:

Preparation
I place a sheet of white paper on the floor.
I lay 20 knives of different sizes and shapes on the floor.
I place 2 tape recorders with microphones on the floor.
Performance
I turn on the first tape recorder.
I take the first knife and stab in between the fingers of my left hand as fast as
possible.
Every time I cut myself, I change to a different knife.
When I’ve used all of the knives (all the rhythms), I rewind the tape recorder.
I listen to the recording of the first part of the performance.
I concentrate.
I repeat the first part of the performance.
I take the knives in the same order, follow to the same order, follow to the
same rhythm and cut myself in the same places.
In this performance, the mistakes of time past and time present are synchro-
nized.
I rewind the second tape recorder and listen to the double rhythm of the
knives.
I leave.

9

174 Conclusion and Future Work

The work described in this thesis was cyclic: It consists of three phases (three stops
as described in Chapter 1), each of which has the same parts: theory (calculus and algo-
rithms), engineering (implementation), and optimization (heuristics). While the calculi
were mostly developed by Alexander Bentkamp [15, 17, 18], the task of developing algo-
rithms for indexing or unification, as well as the tasks of implementing and optimizing
the implementation, were mainly mine.

Structuring the project cyclically turned out to be a great idea of Jasmin Blanchette.
When I first started doing the research which would later form the basis of Chapter 3,
I was overwhelmed by the scope of the project and felt uncertain if E could ever fully
support 𝜆-free higher-order logic. Many of the extensions described in the later chapters
were even larger in scope. However, as each extension relied on the previous one, I quickly
developed a feeling of where the possible pitfalls are and how to avoid them. This gave
me an invaluable source of encouragement, without which I could hardly have arrived at
the end of the project.

Thework in Chapter 3 completed the first cycle. Soon after the original paper introduc-
ing Ehoh [169] was published, Ehoh found its use as the backend of Sledgehammer and
Satallax, showing that even when limited to a fragment of higher-order logic, efficient
higher-order reasoning is in demand.

The goal of the next cycle was to support 𝜆-abstraction. When we first implemented𝜆Sup, the calculus that achieves this goal, we quickly realized that one of its main flaws
was that it relies on enumerating full unifiers. In comparison, some older resolution-based
higher-order calculi enumerate preunifiers, which are less explosive and thus more man-
ageable. This is why we focused on developing a full unification procedure that removes
the redundancy present in other procedures. It also implements many advancements and
optimizations described in the unification literature after the introduction of themost influ-
ential full unification procedure, Jensen-Pietrzykowski’s procedure in the 1970s. We also
made sure that our procedure can easily be customized to trade bits of its completeness for
substantially improved performance. This procedure, described in Chapter 4, transformed
the 𝜆Sup calculus into a competitive higher-order calculus.

Even though 𝜆Sup became competitive, its implementation in Zipperposition lagged
behind the competition. To investigate why this is the case, we manually analyzed hun-
dreds of benchmarks which the competition proves, but on which Zipperposition failed.
This analysis forms the basis of work that is described in Chapters 5 and 6. The main con-
clusion was that the competition, most notably the tableaux-based Satallax, reasons better
with formulas. Tableaux inferences are more intuitive than the ones that superposition or
resolution provers perform and are more in line with how a mathematician structures a
proof. Fitting these kind of inferences into the superposition context was challenging, but
it proved very successful. After they were implemented in Zipperposition, it took its first
victory at the higher-order division of CASC.

After its first victory, Zipperposition was successfully integrated into Sledgehammer
and it is now part of Sledgehammer’s default installation. We also noticed that problems
which only Zipperposition can solve do pop up from time to time in practice. Antoine
Defourné also integrated Zipperposition in the TLA+ proof assistant and observed that it
helps prove some problems that were previously out of reach [53].

Our extension of 𝜆Sup was guided by performance, rather than completeness with

Conclusion and Future Work

9

175

respect to full higher-order logic. After the first victory, we were left wondering what
was the kind of problems that our implementation cannot solve, and started looking for
a complete full higher-order calculus. At the end, we designed 𝑜𝜆Sup, which gave us the
precise answer in the form of problems that cannot be solved and the rules which are
necessary to solve them.

While preparing for the following year’s CASC competition, we found problems that
occur in practice for which the rules of 𝑜𝜆Sup are necessary. However, these problems
occur in less than one percent of the whole TPTP library. Furthermore, some of 𝑜𝜆Sup’s
rules are so explosive that they are disabled in most CASC portfolio configurations.

This led us to take a radically different approach when extending Ehoh to 𝜆E. We
envisioned 𝜆E as a prover that excels on problems coming from proof assistants. Un-
like in TPTP, on these benchmarks hard, hand-crafted mathematical puzzles rarely oc-
cur. Thus, we conjectured that extending 𝜆fSup with the most rudimentary features of𝜆-superposition such as full higher-order unification and 𝛽-reduction-aware term orders
would help us prove most of higher-order problems without the explosion of complete
approaches.

While this proved mostly true, we quickly realized that 𝜆E should assimilate most of
the incomplete Boolean reasoning techniques described in Chapters 5 and 6. All of them
were straightforward to implement except for dynamic clausification, which we did not
implement. It is possible that support for this technique does not require profound changes
to E(hoh)’s formula treatment, but due to a lack of time we did not explore this alley.

This highly pragmatic approach proved successful not only on proof assistant bench-
marks: 𝜆E also excels on TPTP benchmarks, trailing slightly behind Zipperposition. In the
coming months we plan to replace Ehoh by 𝜆E in Sledgehammer. As Ehoh is already one
of the most successful Sledgehammer backends, this will further improve the efficiency of
hundreds of mathematicians and computer scientists using Isabelle. By manually inspect-
ing the TPTP benchmarks that are out of reach for 𝜆E, but within the reach of Zipperpo-
sition, we realized that resolving the lack of dynamic clausification might be the weight
necessary to tip the scales in favor of 𝜆E on TPTP benchmarks.

This extension of Ehoh to 𝜆E finished the third cycle. Inspired by our approach of ex-
tending techniques designed for weaker logics to work in the context of richer logics, we
decided to look for ways in which superposition can assimilate the most successful tech-
niques of SAT solving. Extension of hidden literals was straightforward, but finding the
right way to tame their infinite nature in the first-order case, as well as the right way to
integrate equality in their definition, was challenging. Predicate elimination posed chal-
lenges in terms of finding the exact conditions under which it can be integrated with the
saturation loop. We first observed that blocked clause elimination destroys the complete-
ness of superposition calculus when we noticed that Zipperposition does not prove some
problems when the technique is enabled. After sifting through tens of benchmarks and
carefully examining the debugging information, we realized that this was not due to a bug
in the implementation but due to the incompatibility of blocked clause elimination with
the redundancy criterion. In the end, we were left somewhat disappointed to learn that
SAT techniques do not scale well enough to be used as superposition simplification tech-
niques. However, we learned that they are very successful as preprocessing techniques.

9

176 Conclusion and Future Work

FutureWork
Even though the work in this thesis completes the three-step cycle, there are still many
unexplored alleys for future work. We separate them by the topic explored in one of the
earlier chapters:

Higher-OrderUnification Thecomplete variant of the unification procedure described
in Chapter 4 is proved complete with substantial restrictions on the order and kind of ap-
plied rules. To further remove redundancy, we hipe to find alternative, less explosive
unification rules that do not compromise completeness. Furthermore, we want to inves-
tigate if there are more combinations of unification rules that lead to redundant unifiers
and find ways to remove those redundancy-inducing combinations.

We also described only one pragmatic variant of the unification procedure. This vari-
ant was designed after we sifted through hundreds of benchmarks to get a taste of what
unifiers occur in practice. It is possible that this pragmatic variant can be further tweaked
to perform more efficiently without loosing many useful unifiers.

Lastly, we fixed the order in which Zipperposition applies different unification rules.
It would be interesting to see if applying imitation before projection (or vice versa) yields
performance improvements on some kinds of problems. We also postponed the applica-
tion of the most explosive rules such as iteration to the very end. However, it would not
be surprising if there are many hard hand-crafted problems on which applying these rules
early on would lead to a proof more quickly.

Pragmatic Techniques andHeuristics Many of the Boolean reasoning techniques de-
scribed in Chapter 5 were either inspired by the ones implemented in traditional higher-
order theorem provers or by the unsolved TPTP benchmarks. Since the work present
in Chapter 5 anticipated the complete higher-order calculus that could make these tech-
niques obsolete, we implemented only the most successful ones that are easy to port to
saturation-based provers. Most notably, unlike Satallax [40], Zipperposition does not use
the fact that there only finitely many functions of a type built using only the function type
constructor (→) and Boolean type (𝑜). Implementing techniques for efficient enumeration
of all Boolean functions of a given type could help Zipperposition prove problems that are
still out of its reach, but can be solved by Satallax.

In Chapter 6 we explored how we keep the explosion inherent to the 𝑜𝜆Sup calculus
under control. Due to time and resource constraints, in the evaluation of our new given-
clause loop we fixed some parameters that control which streams are queried. We plan
to tune these parameters in the future. Similarly, we provided only some of the clause
priority functions that rely on higher-order features. We plan to investigate more proofs
in detail to create new priority functions that more cautiously separate less and more
useful higher-order inferences. Lastly, we observed that use of Ehoh as a backend greatly
improves the performance of Zipperposition. We plan to further investigate the proofs
that Ehoh returns and find out how Zipperposition can find them without the use of a
backend.

Further Extensions of 𝜆E 𝜆E outperforms other provers on problems coming from
proof assistants. However, its performance on TPTP problems is slightly behind Zipper-

Conclusion and Future Work

9

177

position. We plan to further investigate the benchmarks on which 𝜆E fails, but that are
proved by Zipperposition. One of the first features we plan to implement is dynamic
clausification, which can possibly help improve 𝜆E’s performance on first-order problems
as well. We also plan to experiment with implementing some of the 𝑜𝜆Sup rules necessary
for completeness such as FLUIDSUP. Heuristics for 𝜆E are trained on a subset of Sledge-
hammer and TPTP problems. We plan to use other benchmark sets such as GRUNGE [41]
to make 𝜆E efficient on a wider range of higher-order benchmarks.

SAT-Inspired Eliminations for Superposition We already implemented some of the
techniques described in Chapter 8 in E. However, this implementation is not properly
tested and optimized. We plan to put finishing touches to this implementation and test the
effects of implemented preprocessing techniques on E’s performance. There aremore tech-
niques used in SAT solving, notably bounded variable addition [111] and blocked clause
addition [101], that we did not port to first-order logic. We want to investigate whether
these techniques can be lifted to first-order logic. Lastly, we already started work on port-
ing existing techniques to higher-order logic.

179

Bibliography

References
[1] Andrews, P.B.: Resolution in type theory. J. Symb. Log. 36(3), 414–432 (1971)

[2] Andrews, P.B.: Classical type theory. In: Robinson, J.A., Voronkov, A. (eds.) Hand-
book of Automated Reasoning, vol. 2, pp. 965–1007. Elsevier and MIT Press (2001)

[3] Andrews, P.B., Bishop, M., Issar, S., Nesmith, D., Pfenning, F., Xi, H.: TPS: A
theorem-proving system for classical type theory. J. Autom. Reason. 16(3), 321–353
(1996)

[4] Avenhaus, J., Denzinger, J., Fuchs, M.: DISCOUNT: A system for distributed equa-
tional deduction. In: Hsiang, J. (ed.) RTA 1995. LNCS, vol. 914, pp. 397–402. Springer
(1995)

[5] Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press
(1998)

[6] Bachmair, L., Ganzinger, H.: Non-clausal resolution and superposition with selec-
tion and redundancy criteria. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp.
273–284. Springer (1992)

[7] Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selec-
tion and simplification. J. Log. Comput. 4(3), 217–247 (1994)

[8] Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, J.A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 1, pp. 19–99. Elsevier
and MIT Press (2001)

[9] Backes, J., Brown, C.E.: Analytic tableaux for higher-order logic with choice. J. Au-
tom. Reason. 47(4), 451–479 (2011)

[10] Barbosa, H., Fontaine, P., Reynolds, A.: Congruence closure with free variables. In:
Legay, A., Margaria, T. (eds.) TACAS 2017, Part II. LNCS, vol. 10206, pp. 214–230
(2017)

[11] Barbosa, H., Reynolds, A., Ouraoui, D.E., Tinelli, C., Barrett, C.W.: Extending SMT
solvers to higher-order logic. In: Fontaine, P. (ed.) CADE-27. LNCS, vol. 11716, pp.
35–54. Springer (2019)

[12] Barrett, C.W., Conway, C.L., Deters, M., Hadarean, L., Jovanovic, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer (2011)

180 Bibliography

[13] Becker, H., Blanchette, J.C., Waldmann, U., Wand, D.: A transfinite Knuth–Bendix
order for lambda-free higher-order terms. In: de Moura, L. (ed.) CADE-26. LNCS,
vol. 10395, pp. 432–453. Springer (2017)

[14] Beeson, M.: Lambda logic. In: Basin, D.A., Rusinowitch, M. (eds.) IJCAR 2004. LNCS,
vol. 3097, pp. 460–474. Springer (2004)

[15] Bentkamp, A., Blanchette, J., Cruanes, S., Waldmann, U.: Superposition for lambda-
free higher-order logic. Log. Methods Comput. Sci. 17(2) (2021)

[16] Bentkamp, A., Blanchette, J., Nummelin, V., Tourret, S., Vukmirović, P., Waldmann,
U.: Mechanical mathematicians (2022), https://matryoshka-project.github.io/
pubs/mechanical.pdf, draft article

[17] Bentkamp, A., Blanchette, J., Tourret, S., Vukmirović, P.: Superposition for full
higher-order logic. In: Platzer, A., Sutcliffe, G. (eds.) CADE-28. LNCS, vol. 12699,
pp. 396–412. Springer (2021)

[18] Bentkamp, A., Blanchette, J., Tourret, S., Vukmirović, P., Waldmann, U.: Superposi-
tion with lambdas. J. Autom. Reason. 65(7), 893–940 (2021)

[19] Benzmüller, C., Kohlhase, M.: System description: LEO—a higher-order theorem
prover. In: Kirchner, C., Kirchner, H. (eds.) CADE-15. LNCS, vol. 1421, pp. 139–144.
Springer (1998)

[20] Benzmüller, C., Miller, D.: Automation of higher-order logic. In: Siekmann, J.H. (ed.)
Computational Logic, Handbook of theHistory of Logic, vol. 9, pp. 215–254. Elsevier
(2014)

[21] Benzmüller, C., Sorge, V., Jamnik, M., Kerber, M.: Can a higher-order and a first-
order theorem prover cooperate? In: Baader, F., Voronkov, A. (eds.) LPAR 2004.
LNCS, vol. 3452, pp. 415–431. Springer (2004)

[22] Benzmüller, C., Sultana, N., Paulson, L.C., Theiss, F.: The higher-order prover LEO-II.
J. Autom. Reason. 55(4), 389–404 (2015)

[23] Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development:
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science, Springer (2004)

[24] Bhayat, A., Reger, G.: Restricted combinatory unification. In: Fontaine, P. (ed.)
CADE-27. LNCS, vol. 11716, pp. 74–93. Springer (2019)

[25] Bhayat, A., Reger, G.: A combinator-based superposition calculus for higher-order
logic. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS, vol. 12166,
pp. 278–296. Springer (2020)

[26] Biere, A.: Resolve and expand. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS,
vol. 3542, pp. 59–70. Springer (2004)

https://matryoshka-project.github.io/pubs/mechanical.pdf
https://matryoshka-project.github.io/pubs/mechanical.pdf

References 181

[27] Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner, N.,
Sofronie-Stokkermans, V. (eds.) CADE-23. LNCS, vol. 6803, pp. 101–115. Springer
(2011)

[28] Blanchette, J., Fontaine, P., Schulz, S., Tourret, S., Waldmann, U.: Stronger higher-
order automation: A report on the ongoing matryoshka project. In: Suda, M., Win-
kler, S. (eds.) EPTCS 311: Proceedings of the Second International Workshop on
Automated Reasoning: Challenges, Applications, Directions, Exemplary Achieve-
ments - Natal, Brazil, August 26, 2019. pp. 11–18. Electronic Proceedings inTheoret-
ical Computer Science, EPTCS, EPTCS (12 2019)

[29] Blanchette, J.C., Böhme, S., Popescu, A., Smallbone, N.: Encodingmonomorphic and
polymorphic types. Log. Meth. Comput. Sci. 12(4), 13:1–13:52 (2016)

[30] Blanchette, J.C., Greenaway, D., Kaliszyk, C., Kühlwein, D., Urban, J.: A learning-
based fact selector for Isabelle/HOL. J. Autom. Reason. 57(3), 219–244 (2016)

[31] Blanchette, J.C., Paskevich, A.: TFF1: the TPTP typed first-order form with rank-
1 polymorphism. In: Bonacina, M.P. (ed.) CADE. LNCS, vol. 7898, pp. 414–420.
Springer (2013)

[32] Blanchette, J.C., Waldmann, U., Wand, D.: A lambda-free higher-order recursive
path order. In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203,
pp. 461–479. Springer (2017)

[33] Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd Your Herd of
Provers. In: Boogie 2011: First InternationalWorkshop on Intermediate Verification
Languages. pp. 53–64. Wroclaw, Poland (2011)

[34] Böhme, S., Nipkow, T.: Sledgehammer: Judgement day. In: Giesl, J., Hähnle, R. (eds.)
IJCAR 2010. LNCS, vol. 6173, pp. 107–121. Springer (2010)

[35] Bonacina, M.P., Graham-Lengrand, S., Shankar, N.: Satisfiability modulo theories
and assignments. In: de Moura, L. (ed.) CADE-26. LNCS, vol. 10395, pp. 42–59.
Springer (2017)

[36] Bonacina, M.P., Lynch, C., de Moura, L.: On deciding satisfiability by DPLL(Γ+𝑇)
and unsound theorem proving. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663,
pp. 35–50. Springer (2009)

[37] Bonacina, M.P., Plaisted, D.A.: SGGS theorem proving: An exposition. In: Schulz,
S., de Moura, L., Konev, B. (eds.) PAAR-2014. EPiC Series in Computing, vol. 31, pp.
25–38. EasyChair (2014)

[38] Bouton, T., Oliveira, D.C.B.D., Déharbe, D., Fontaine, P.: veriT: An open, trustable
and efficient SMT-solver. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 151–
156. Springer (2009)

[39] Brown, C.E.: Satallax: An automatic higher-order prover. In: IJCAR 2012. LNCS,
vol. 7364, pp. 111–117. Springer (2012)

182 Bibliography

[40] Brown, C.E.: Reducing higher-order theorem proving to a sequence of SAT prob-
lems. J. Autom. Reason. 51(1), 57–77 (2013)

[41] Brown, C.E., Gauthier, T., Kaliszyk, C., Sutcliffe, G., Urban, J.: GRUNGE: A grand
unifiedATP challenge. In: Fontaine, P. (ed.) CADE-27. LNCS, vol. 11716, pp. 123–141.
Springer (2019)

[42] Bruijn, N.G.D.: Lambda calculus notation with nameless dummies, a tool for au-
tomatic formula manipulation, with application to the Church-Rosser theorem. J.
Symb. Log. 40(3), 470–470 (1975)

[43] Carnielli, W., Coniglio, M.E., Marcos, J.: Logics of formal inconsistency. In: Gabbay,
D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic. Handbook of Philo-
sophical Logic, vol. 14, pp. 1–93. Springer (2007)

[44] Chang, C., Lee, R.C.T.: Symbolic logic and mechanical theorem proving. Computer
science classics, Academic Press (1973)

[45] Charguéraud, A.: The locally nameless representation. J. Autom. Reason. 49(3), 363–
408 (2012)

[46] Chatalic, P., Simon, L.: ZRES: The old Davis–Putnam procedure meets ZBDD. In:
McAllester, D.A. (ed.) CADE-18. LNCS, vol. 1831, pp. 449–454. Springer (2000)

[47] Church, A.: A note on the entscheidungsproblem. J. Symb. Log. 1(1), 40–41 (1936)

[48] Cruanes, S.: Extending Superposition with Integer Arithmetic, Structural Induc-
tion, and Beyond. (Extensions de la Superposition pour l’Arithmétique Linéaire En-
tière, l’Induction Structurelle, et bien plus encore). Ph.D. thesis, École Polytechnique,
Palaiseau, France (2015)

[49] Cruanes, S.: Superposition with structural induction. In: Dixon, C., Finger, M. (eds.)
FroCoS 2017. LNCS, vol. 10483, pp. 172–188. Springer (2017)

[50] Czajka, Ł.: Improving automation in interactive theorem provers by efficient encod-
ing of lambda-abstractions. In: Avigad, J., Chlipala, A. (eds.) CPP 2016. pp. 49–57.
ACM (2016)

[51] Czajka, L., Kaliszyk, C.: Hammer for Coq: Automation for dependent type theory.
J. Autom. Reason. 61(1-4), 423–453 (2018)

[52] Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM
7(3), 201–215 (1960)

[53] Defourné, A.: Improving automation for higher-order proof steps. In: Konev, B.,
Reger, G. (eds.) FroCoS. LNCS, vol. 12941, pp. 139–153. Springer (2021)

[54] Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun.
ACM 22(8), 465–476 (1979)

References 183

[55] Desharnais, M., Vukmirović, P., Blanchette, J., Wenzel, M.: Seventeen provers under
the hammer, https://matryoshka-project.github.io/pubs/seventeen.pdf, draft
paper

[56] Dougherty, D.J.: Higher-order unification via combinators. Theor. Comput. Sci.
114(2), 273–298 (1993)

[57] Dowek, G.: Higher-order unification and matching. In: Robinson, J.A., Voronkov, A.
(eds.) Handbook of Automated Reasoning, pp. 1009–1062. Elsevier and MIT Press
(2001)

[58] Ebner, G., Blanchette, J., Tourret, S.: Unifying splitting. In: Platzer, A., Sutcliffe, G.
(eds.) CADE-28. LNCS, vol. 12699, pp. 344–360. Springer (2021)

[59] Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elim-
ination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75.
Springer (2005)

[60] Färber, M., Brown, C.E.: Internal guidance for Satallax. In: Olivetti, N., Tiwari, A.
(eds.) IJCAR 2016. LNCS, vol. 9706, pp. 349–361. Springer (2016)

[61] Farmer, W.M.: A unification algorithm for second-order monadic terms. Ann. Pure
Appl. Logic 39(2), 131–174 (1988)

[62] Ferreirós, J.: The road to modern logic - an interpretation. Bull. Symb. Log. 7(4),
441–484 (2001)

[63] Fietzke, A., Weidenbach, C.: Labelled splitting. Ann. Math. Artif. Intell. 55(1–2), 3–
34 (2009)

[64] Filliâtre, J.-C., Paskevich, A.: Why3—where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer (2013)

[65] Fitting, M.: First-Order Logic and Automated Theorem Proving. Graduate Texts in
Computer Science, Springer, 2nd edn. (1996)

[66] Freeman, J.W.: Improvements to Propositional Satisfiability Search Algorithms.
Ph.D. thesis, University of Pennsylvania (1995)

[67] Gabbay, D.M., Ohlbach, H.J.: Quantifier elimination in second-order predicate logic.
In: Nebel, B., Rich, C., Swartout, W.R. (eds.) KR ’92. pp. 425–435. Morgan Kaufmann
(1992)

[68] Gallier, J.H.: Logic for Computer Science: Foundations of Automatic Theorem Prov-
ing. Wiley (1987)

[69] Ganzinger, H., Stuber, J.: Superposition with equivalence reasoning and delayed
clause normal form transformation. Inf. Comput. 199(1-2), 3–23 (2005)

https://matryoshka-project.github.io/pubs/seventeen.pdf

184 Bibliography

[70] Gleiss, B., Suda, M.: Layered clause selection for theory reasoning (short paper). In:
Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020, Part I. LNCS, vol. 12166, pp.
402–409. Springer (2020)

[71] Gonthier, G.: Formal proof—The four-color theorem. Notices of the AMS 55(11),
1382–1393 (2008)

[72] Gödel, K.: Die vollständigkeit der axiome des logischen funktionenkalküls. Monat-
shefte für Mathematik und Physik 37, 349–360 (1930)

[73] Hales, T.C., Adams, M., Bauer, G., Dang, D.T., Harrison, J., Hoang, T.L., Kaliszyk, C.,
Magron, V., McLaughlin, S., Nguyen, T.T., Nguyen, T.Q., Nipkow, T., Obua, S., Pleso,
J., Rute, J.M., Solovyev, A., Ta, A.H.T., Tran, T.N., Trieu, D.T., Urban, J., Vu, K.K.,
Zumkeller, R.: A formal proof of the Kepler conjecture. CoRR abs/1501.02155 (2015)

[74] Harrison, J.: HOL light: An overview. In: Berghofer, S., Nipkow, T., Urban, C., Wen-
zel, M. (eds.) TPHOLs. LNCS, vol. 5674, pp. 60–66. Springer (2009)

[75] Heule, M., Seidl, M., Biere, A.: A unified proof system for QBF preprocessing. In:
Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 91–106.
Springer (2014)

[76] Heule, M.J.H., Järvisalo, M., Biere, A.: Clause elimination procedures for CNF formu-
las. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 357–371.
Springer (2010)

[77] Heule, M.J.H., Järvisalo, M., Biere, A.: Efficient CNF simplification based on binary
implication graphs. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695,
pp. 201–215. Springer (2011)

[78] Hoder, K., Reger, G., Suda, M., Voronkov, A.: Selecting the selection. In: Olivetti, N.,
Tiwari, A. (eds.) IJCAR 2016. LNCS, vol. 9706, pp. 313–329. Springer (2016)

[79] Hoder, K., Voronkov, A.: Comparing unification algorithms in first-order theorem
proving. In: Mertsching, B., Hund, M., Aziz, M.Z. (eds.) KI 2009. LNCS, vol. 5803, pp.
435–443. Springer (2009)

[80] Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: Bjørner, N.,
Sofronie-Stokkermans, V. (eds.) CADE-23. LNCS, vol. 6803, pp. 299–314. Springer
(2011)

[81] Huet, G.P.: A mechanization of type theory. In: Nilsson, N.J. (ed.) IJCAI-73. pp. 139–
146. William Kaufmann (1973)

[82] Huet, G.P.: A unification algorithm for typed lambda-calculus. Theor. Comput. Sci.
1(1), 27–57 (1975)

[83] Hughes, R.J.M.: Super combinators: A new implementation method for applicative
languages. In: Park, D.M.R., Friedman, D.P., Wise, D.S., Jr., G.L.S. (eds.) Symposium
on LISP and Functional Programming. pp. 1–10. ACM (1982)

References 185

[84] Huth, M., Ryan, M.D.: Logic in Computer Science - Modelling and Reasoning about
Systems. Cambridge University Press (2000)

[85] Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Esparza, J., Ma-
jumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer (2010)

[86] Jensen, D.C., Pietrzykowski, T.: Mechanizing omega-order type theory through uni-
fication. Theor. Comput. Sci. 3(2), 123–171 (1976)

[87] Johnsson, T.: Lambda lifting: Transforming programs to recursive equations. In:
Jouannaud, J. (ed.) FPCA 1985. LNCS, vol. 201, pp. 190–203. Springer (1985)

[88] Kaliszyk, C., Sutcliffe, G., Rabe, F.: TH1: the TPTP typed higher-order form with
rank-1 polymorphism. In: Fontaine, P., Schulz, S., Urban, J. (eds.) PAAR@IJCAR.
CEUR Workshop Proceedings, vol. 1635, pp. 41–55. CEUR-WS.org (2016)

[89] Kaliszyk, C., Urban, J.: HOL(y)Hammer: Online ATP service for HOL Light. Math.
Comput. Sci. 9(1), 5–22 (2015)

[90] Kamareddine, F.: Reviewing the classical and the De Bruijn notation for lambda-
calculus and pure type systems. J. Log. Comput. 11(3), 363–394 (2001)

[91] Khasidashvili, Z., Korovin, K.: Predicate elimination for preprocessing in first-order
theorem proving. In: Creignou, N., Berre, D.L. (eds.) SAT 2016. LNCS, vol. 9710, pp.
361–372. Springer (2016)

[92] Kiesl, B., Suda, M.: A unifying principle for clause elimination in first-order logic.
In: de Moura, L. (ed.) CADE-26. LNCS, vol. 10395, pp. 274–290. Springer (2017)

[93] Kiesl, B., Suda, M., Seidl, M., Tompits, H., Biere, A.: Blocked clauses in first-order
logic. In: Eiter, T., Sands, D. (eds.) LPAR-21. EPiC Series in Computing, vol. 46, pp.
31–48. EasyChair (2017)

[94] Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe,
D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: seL4:
formal verification of an OS kernel. In: Matthews, J.N., Anderson, T.E. (eds.) SOSP
2009. pp. 207–220. ACM (2009)

[95] Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech, J.
(ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon (1970)

[96] Kohlhase, M.: A mechanization of sorted higher-order logic based on the resolution
principle. Ph.D. thesis, Universität des Saarlandes, Saarbrücken, Germany (1994)

[97] Korovin, K.: iProver - an instantiation-based theorem prover for first-order logic
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS, vol. 5195, pp. 292–298. Springer (2008)

[98] Kotelnikov, E., Kovács, L., Suda, M., Voronkov, A.: A clausal normal form translation
for FOOL. In: Benzmüller, C., Sutcliffe, G., Rojas, R. (eds.) GCAI 2016. EPiC Series
in Computing, vol. 41, pp. 53–71. EasyChair (2016)

186 Bibliography

[99] Kotelnikov, E., Kovács, L., Voronkov, A.: A first class Boolean sort in first-order
theorem proving and TPTP. In: CICM 2015. pp. 71–86 (2015)

[100] Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer (2013)

[101] Kullmann, O.: On a generalization of extended resolution. Discr. Appl. Math. 96–97,
149–176 (1999)

[102] Leino, K.R.M., Rümmer, P.: A polymorphic intermediate verification language: De-
sign and logical encoding. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS,
vol. 6015, pp. 312–327. Springer (2010)

[103] Leroy, X.: Formal verification of a realistic compiler. Communications of the ACM
52(7), 107–115 (2009)

[104] Levecque, K., Anseel, F., De Beuckelaer, A., Van der Heyden, J., Gisle, L.: Work
organization and mental health problems in PhD students. Research Policy 46(4),
868–879 (2017)

[105] Libal, T., Miller, D.: Functions-as-constructors higher-order unification. In: Kesner,
D., Pientka, B. (eds.) FSCD 2016. LIPIcs, vol. 52, pp. 26:1–26:17. Schloss Dagstuhl
(2016)

[106] Libal, T., Steen, A.: Towards a substitution tree based index for higher-order res-
olution theorem provers. In: Fontaine, P., Schulz, S., Urban, J. (eds.) PAAR 2016.
CEUR-WS, vol. 1635, pp. 82–94. CEUR-WS (2016)

[107] Lindblad, F.: A focused sequent calculus for higher-order logic. In: Demri, S., Kapur,
D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 61–75. Springer (2014)

[108] Löchner, B.: Things to know when implementing KBO. J. Autom. Reason. 36(4),
289–310 (2006)

[109] Löchner, B., Schulz, S.: An evaluation of shared rewriting. In: de Nivelle, H., Schulz,
S. (eds.) IWIL-2001. pp. 33–48. Max-Planck-Institut für Informatik (2001)

[110] Manna, Z., Waldinger, R.: A deductive approach to program synthesis. In:
Buchanan, B.G. (ed.) IJCAI-79. pp. 542–551. William Kaufmann (1979)

[111] Manthey, N., Heule, M., Biere, A.: Automated reencoding of Boolean formulas.
In: Biere, A., Nahir, A., Vos, T.E.J. (eds.) HVC 2012. LNCS, vol. 7857, pp. 102–117.
Springer (2012)

[112] Marques-Silva, J.P., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers.
In: Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiabil-
ity, Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 131–153. IOS
Press (2009)

[113] McCune, W.: Experiments with discrimination-tree indexing and path indexing for
term retrieval. J. Autom. Reason. 9(2), 147–167 (1992)

References 187

[114] McCune, W.: Solution of the Robbins problem. J. Autom. Reason. 19(3), 263–276
(1997)

[115] McCune, W.: OTTER 3.3 reference manual. CoRR cs.SC/0310056 (2003)

[116] McCune, W., Wos, L.: Otter—the CADE-13 competition incarnations. J. Autom. Rea-
son. 18(2), 211–220 (1997)

[117] Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses. J.
Autom. Reason. 40(1), 35–60 (2008)

[118] Miller, D., Nadathur, G.: Programming with Higher-Order Logic. Cambridge Uni-
versity Press (2012)

[119] Miller, D.A.: A compact representation of proofs. Stud. Log. 46(4), 347–370 (1987)

[120] de Moura, L., Jovanović, D.: A model-constructing satisfiability calculus. In: Gia-
cobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 1–12.
Springer (2013)

[121] de Moura, L.M., Bjørner, N.: Efficient E-matching for SMT solvers. In: Pfenning, F.
(ed.) CADE-21. LNCS, vol. 4603, pp. 183–198. Springer (2007)

[122] Murray, N.V.: Completely non-clausal theorem proving. Artif. Intell. 18(1), 67–85
(1982)

[123] Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson,
J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 371–443. Elsevier
and MIT Press (2001)

[124] Nipkow, T.: Functional unification of higher-order patterns. In: Best, E. (ed.) LICS
1993. pp. 64–74. IEEE Computer Society (1993)

[125] Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for Higher-
Order Logic, LNCS, vol. 2283. Springer (2002)

[126] Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Robin-
son, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 335–367. El-
sevier and MIT Press (2001)

[127] Nummelin, V., Bentkamp, A., Tourret, S., Vukmirović, P.: Superposition with first-
class Booleans and inprocessing clausification. In: Platzer, A., Sutcliffe, G. (eds.)
CADE-28. LNCS, Springer (2021)

[128] Ohlbach, H.J.: SCAN—elimination of predicate quantifiers. In: McRobbie, M.A.,
Slaney, J.K. (eds.) CADE-13. LNCS, vol. 1104, pp. 161–165. Springer (1996)

[129] Okasaki, C.: Purely Functional Data Structures. Cambridge University Press (1999)

[130] Paulson, L.C.: Isabelle: The next seven hundred theorem provers. In: Lusk, E.L.,
Overbeek, R.A. (eds.) CADE-9. LNCS, vol. 310, pp. 772–773. Springer (1988)

188 Bibliography

[131] Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer,
a practical link between automatic and interactive theorem provers. In: Sutcliffe, G.,
Schulz, S., Ternovska, E. (eds.) IWIL-2010. EPiC, vol. 2, pp. 1–11. EasyChair (2012)

[132] Peltier, N.: A variant of the superposition calculus. Archive of Formal Proofs (2016),
https://www.isa-afp.org/

[133] Prehofer, C.: Solving higher order equations: from logic to programming. Ph.D.
thesis, Technical University Munich, Germany (1995)

[134] Ramakrishnan, I.V., Sekar, R.C., Voronkov, A.: Term indexing. In: Handbook of Au-
tomated Reasoning, vol. 2, pp. 1853–1964. Elsevier and MIT Press (2001)

[135] Reger, G., Suda, M.: Checkable proofs for first-order theorem proving. In: Reger,
G., Traytel, D. (eds.) ARCADE 2017. EPiC Series in Computing, vol. 51, pp. 55–63.
EasyChair (2017)

[136] Reger, G., Suda, M., Voronkov, A.: Playingwith AVATAR. In: Felty, A.P., Middeldorp,
A. (eds.) CADE-25. LNCS, vol. 9195, pp. 399–415. Springer (2015)

[137] Reger, G., Suda, M., Voronkov, A.: New techniques in clausal form generation. In:
Benzmüller, C., Sutcliffe, G., Rojas, R. (eds.) GCAI 2016. EPiC Series in Computing,
vol. 41, pp. 11–23. EasyChair (2016)

[138] Reynolds, A., Barbosa, H., Fontaine, P.: Revisiting enumerative instantiation. In:
Beyer, D., Huisman, M. (eds.) TACAS 2018, Part II. LNCS, vol. 10806, pp. 112–131.
Springer (2018)

[139] Riazanov, A., Voronkov, A.: Splitting without backtracking. In: Nebel, B. (ed.) IJCAI
2001. pp. 611–617. Morgan Kaufmann (2001)

[140] Robinson, J.: Mechanizing higher order logic. In: Meltzer, B., Michie, D. (eds.) Ma-
chine Intelligence, vol. 4, pp. 151–170. Edinburgh University Press (1969)

[141] Robinson, J.: A note on mechanizing higher order logic. In: Meltzer, B., Michie, D.
(eds.) Machine Intelligence, vol. 5, pp. 121–135. Edinburgh University Press (1970)

[142] Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM
12(1), 23–41 (1965)

[143] Schulz, S.: E - a brainiac theorem prover. AI Commun. 15(2-3), 111–126 (2002)

[144] Schulz, S.: Fingerprint indexing for paramodulation and rewriting. In: Gramlich, B.,
Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 477–483. Springer (2012)

[145] Schulz, S.: Simple and efficient clause subsumption with feature vector indexing. In:
Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics—Essays
in Memory of William W. McCune. LNCS, vol. 7788, pp. 45–67. Springer (2013)

[146] Schulz, S.: We know (nearly) nothing! But can we learn? In: Reger, G., Traytel, D.
(eds.) ARCADE 2017. EPiC Series in Computing, vol. 51, pp. 29–32. EasyChair (2017)

https://www.isa-afp.org/

References 189

[147] Schulz, S., Cruanes, S., Vukmirović, P.: Faster, higher, stronger: E 2.3. In: Fontaine,
P. (ed.) CADE-27. LNCS, vol. 11716, pp. 495–507. Springer (2019)

[148] Schulz, S., Möhrmann, M.: Performance of clause selection heuristics for saturation-
based theorem proving. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS, vol. 9706,
pp. 330–345. Springer (2016)

[149] Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability. In:
ICCAD 1996. pp. 220–227. IEEE Computer Society / ACM (1996)

[150] Snyder, W., Gallier, J.H.: Higher-order unification revisited: Complete sets of trans-
formations. J. Symb. Comput. 8(1/2), 101–140 (1989)

[151] Steen, A.: Extensional paramodulation for higher-order logic and its effective imple-
mentation Leo-III. Ph.D. thesis, Free University of Berlin, Dahlem, Germany (2018)

[152] Steen, A., Benzmüller, C.: There is no best 𝛽-normalization strategy for higher-order
reasoners. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR-20. LNCS,
vol. 9450, pp. 329–339. Springer (2015)

[153] Steen, A., Benzmüller, C.: Extensional higher-order paramodulation in Leo-III. J.
Autom. Reason. 65(6), 775–807 (2021)

[154] Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: A cross-community infrastructure for
logic solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS,
vol. 8562, pp. 367–373. Springer (2014)

[155] Subbarayan, S., Pradhan, D.K.: NiVER: Non-increasing variable elimination resolu-
tion for preprocessing SAT instances. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004.
LNCS, vol. 3542, pp. 276–291. Springer (2004)

[156] Sultana, N., Blanchette, J.C., Paulson, L.C.: LEO-II and Satallax on the Sledgeham-
mer test bench. J. Appl. Log. 11(1), 91–102 (2013)

[157] Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure. From CNF
to TH0, TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017)

[158] Sutcliffe, G.: The 6th IJCAR automated theorem proving system competition—
CASC-J6. AI Comm. 26(2), 211–223 (2013)

[159] Sutcliffe, G.: TheCADE-26 automated theorem proving system competition—CASC-
26. AI Commun. 30(6), 419–432 (2017)

[160] Sutcliffe, G.: The CADE-27 automated theorem proving system competition - CASC-
27. AI Commun. 32(5-6), 373–389 (2019)

[161] Sutcliffe, G.: The 10th IJCAR automated theorem proving system competition -
CASC-J10. AI Commun. 34(2), 163–177 (2021)

[162] Sutcliffe, G., Suttner, C.B.: Evaluating general purpose automated theorem proving
systems. Artif. Intell. 131(1-2), 39–54 (2001)

190 Bibliography

[163] Suttner, C.B., Sutcliffe, G.: The design of the CADE-13 ATP system competition. In:
McRobbie, M.A., Slaney, J.K. (eds.) CADE-13. LNCS, vol. 1104, pp. 146–160. Springer
(1996)

[164] Turing, A.M.: On computable numbers, with an application to the entschei-
dungsproblem. Proceedings of the London Mathematical Society s2-42(1), 230–265
(1937)

[165] Turner, D.A.: Another algorithm for bracket abstraction. J. Symb. Log. 44(2), 267–
270 (1979)

[166] Urban, J., Rudnicki, P., Sutcliffe, G.: ATP and presentation service for Mizar formal-
izations. J. Autom. Reason. 50(2), 229–241 (2013)

[167] Voronkov, A.: AVATAR: the architecture for first-order theorem provers. In: Biere,
A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 696–710. Springer (2014)

[168] Vukmirović, P., Bentkamp, A., Nummelin, V.: Efficient full higher-order unification
167, 5:1–5:17 (2020)

[169] Vukmirović, P., Blanchette, J.C., Cruanes, S., Schulz, S.: Extending a brainiac prover
to lambda-free higher-order logic. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS,
vol. 11427, pp. 192–210. Springer (2019)

[170] Vukmirović, P., Nummelin, V.: Boolean reasoning in a higher-order superposi-
tion prover. In: Fontaine, P., Korovin, K., Kotsireas, I.S., Rümmer, P., Tourret, S.
(eds.) PAAR+SC-Square 2020. CEUR Workshop Proceedings, vol. 2752, pp. 148–166.
CEUR-WS.org (2020)

[171] Waldmann, U., Tourret, S., Robillard, S., Blanchette, J.: A comprehensive framework
for saturation theorem proving. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJ-
CAR 2020. LNCS, vol. 12166, pp. 316–334. Springer (2020)

[172] Waldmann, U., Tourret, S., Robillard, S., Blanchette, J.: A comprehensive framework
for saturation theorem proving (2021), https://matryoshka-project.github.io/
pubs/saturate_article.pdf, accepted in J. Autom. Reason.

[173] Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.:
SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 140–145.
Springer (2009)

[174] Wisniewski, M., Steen, A., Kern, K., Benzmüller, C.: Effective normalization tech-
niques for HOL. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS, vol. 9706, pp.
362–370. Springer (2016)

[175] Wos, L., Robinson, G.A., Carson, D.F.: Efficiency and completeness of the set of
support strategy in theorem proving. J. ACM 12(4), 536–541 (1965)

https://matryoshka-project.github.io/pubs/saturate_article.pdf
https://matryoshka-project.github.io/pubs/saturate_article.pdf

Titles in the IPA Dissertation Series since 2019

S.M.J. de Putter. Verification of Concur-
rent Systems in a Model-Driven Engineer-
ing Workflow. Faculty of Mathematics and
Computer Science, TU/e. 2019-01
S.M. Thaler. Automation for Information
Security using Machine Learning. Faculty
of Mathematics and Computer Science,
TU/e. 2019-02
Ö. Babur. Model Analytics and Manage-
ment. Faculty of Mathematics and Com-
puter Science, TU/e. 2019-03
A. Afroozeh and A. Izmaylova. Practi-
cal General Top-down Parsers. Faculty of
Science, UvA. 2019-04
S. Kisfaludi-Bak. ETH-Tight Algorithms
for Geometric Network Problems. Faculty
of Mathematics and Computer Science,
TU/e. 2019-05
J. Moerman. Nominal Techniques and
Black Box Testing for Automata Learning.
Faculty of Science, Mathematics and Com-
puter Science, RU. 2019-06
V. Bloemen. Strong Connectivity and
Shortest Paths for CheckingModels. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2019-07
T.H.A. Castermans. Algorithms for Vi-
sualization in Digital Humanities. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2019-08
W.M. Sonke. Algorithms for River Net-
work Analysis. Faculty ofMathematics and
Computer Science, TU/e. 2019-09
J.J.G. Meijer. Efficient Learning and Anal-
ysis of System Behavior. Faculty of Electri-
cal Engineering, Mathematics &Computer
Science, UT. 2019-10
P.R. Griffioen. A Unit-Aware Matrix Lan-
guage and its Application in Control and Au-
diting. Faculty of Science, UvA. 2019-11

A.A. Sawant. The impact of API evolu-
tion on API consumers and how this can
be affected by API producers and language
designers. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2019-12
W.H.M. Oortwijn. Deductive Techniques
for Model-Based Concurrency Verification.
Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2019-13
M.A. Cano Grijalba. Session-Based Con-
currency: Between Operational and Declar-
ative Views. Faculty of Science and Engi-
neering, RUG. 2020-01
T.C. Nägele. CoHLA: Rapid Co-simulation
Construction. Faculty of Science, Mathe-
matics and Computer Science, RU. 2020-02
R.A. van Rozen. Languages of Games
and Play: Automating Game Design & En-
abling Live Programming. Faculty of Sci-
ence, UvA. 2020-03
B. Changizi. Constraint-Based Analysis of
Business Process Models. Faculty of Mathe-
matics and Natural Sciences, UL. 2020-04
N. Naus. Assisting End Users in Workflow
Systems. Faculty of Science, UU. 2020-05
J.J.H.M. Wulms. Stability of Geometric
Algorithms. Faculty of Mathematics and
Computer Science, TU/e. 2020-06
T.S. Neele. Reductions for Parity Games
and Model Checking. Faculty of Mathemat-
ics and Computer Science, TU/e. 2020-07
P. van den Bos. Coverage and Games in
Model-Based Testing. Faculty of Science,
RU. 2020-08
M.F.M. Sondag. Algorithms for Coher-
ent Rectangular Visualizations. Faculty
of Mathematics and Computer Science,
TU/e. 2020-09

D.Frumin. Concurrent Separation Logics
for Safety, Refinement, and Security. Fac-
ulty of Science, Mathematics and Com-
puter Science, RU. 2021-01

A. Bentkamp. Superposition for Higher-
Order Logic. Faculty of Sciences, Depart-
ment of Computer Science, VU. 2021-02

P. Derakhshanfar. Carving Information
Sources to Drive Search-based Crash Repro-
duction and Test Case Generation. Fac-
ulty of Electrical Engineering, Mathemat-
ics, and Computer Science, TUD. 2021-03

K. Aslam. Deriving Behavioral Specifi-
cations of Industrial Software Components.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2021-04

W. Silva Torres. Supporting Multi-
Domain Model Management. Faculty
of Mathematics and Computer Science,
TU/e. 2021-05

A. Fedotov. Verification Techniques for
xMAS. Faculty of Mathematics and Com-
puter Science, TU/e. 2022-01

M.O. Mahmoud. GPU Enabled Auto-
mated Reasoning. Faculty of Mathematics
and Computer Science, TU/e. 2022-02
M. Safari. Correct Optimized GPU Pro-
grams. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2022-03
M. Verano Merino. Engineering
Language-Parametric End-User Program-
ming Environments for DSLs. Faculty
of Mathematics and Computer Science,
TU/e. 2022-04
G.F.C. Dupont. Network Security Moni-
toring in Environments where Digital and
Physical Safety are Critical. Faculty
of Mathematics and Computer Science,
TU/e. 2022-05
T.M. Soethout. Banking on Domain
Knowledge for Faster Transactions. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2022-06
P. Vukmirović. Implementation of
Higher-Order Superposition. Faculty of Sci-
ences, Department of Computer Science,
VU. 2022-10

