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Abstract. AVATAR is an elegant and effective way to split clauses in a
saturation prover using a SAT solver. But is it refutationally complete?
And how does it relate to other splitting architectures? To answer these
questions, we present a unifying framework that extends a saturation
calculus (e.g., superposition) with splitting and embeds the result in a
prover guided by a SAT solver. The framework also allows us to study
locking, a subsumption-like mechanism based on the current proposi-
tional model. Various architectures are instances of the framework, in-
cluding AVATAR, labeled splitting, and SMT with quantifiers.

1 Introduction

One of the great strengths of saturation calculi such as superposition [1] is that
they avoid case distinctions. Derived clauses hold unconditionally, and the prover
can stop as soon as it derives the empty clause, without having to backtrack.
The drawback is that these calculi often generate long, unwieldy clauses that
slow down the prover. A remedy is to partition the search space by splitting a
multiple-literal clause C1∨· · ·∨Cn into variable-disjoint subclauses Ci. Splitting
approaches include splitting with backtracking [24], splitting without backtrack-
ing [20], labeled splitting [10], and AVATAR [22].

The SAT-based AVATAR architecture is of particular interest because it is
so successful. Voronkov reported that an AVATAR-enabled Vampire could solve
421 TPTP [21] problems that had never been solved before by any system [22,
Sect. 9], a mind-boggling number. AVATAR works well in combination with
the superposition calculus because it combines superposition’s strong equality
reasoning with the SAT solver’s strong clausal reasoning. It is also appealing
theoretically, because it gracefully generalizes traditional saturation provers and
yet degenerates to a SAT solver if the problem is propositional.

Example 1. To illustrate the approach, we follow the key steps of an AVATAR-
enabled resolution prover on the initial clause set containing ¬p(a), ¬q(z, z), and
p(x) ∨ q(y, b). The disjunction can be split into p(x)← {[p(x)]} and q(y, b)←
{[q(y, b)]}, where C←{[C]} indicates that the clause C is enabled only in models
in which the associated propositional variable [C] is true. A SAT solver is then
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run to choose a model J of [p(x)] ∨ [q(y, b)]. Suppose J makes [p(x)] true and
[q(y, b)] false. Then resolution of p(x) ← {[p(x)]} with ¬p(a) produces ⊥ ←
{[p(x)]}, which closes the branch. Next, the SAT solver makes the right disjunct
true, and resolving q(y, b)←{[q(y, b)]} with ¬q(z, z) yields ⊥←{[q(y, b)]}. The
SAT solver then reports “unsatisfiable,” concluding the refutation.

What about refutational completeness? Far from being a purely theoretical
concern, establishing completeness—or finding counterexamples—could yield in-
sights into splitting and maybe lead to an even stronger AVATAR. Before we can
answer this open question, we must mathematize splitting. Our starting point is
the saturation framework by Waldmann, Tourret, Robillard, and Blanchette [23],
based on Bachmair and Ganzinger [2]. It covers a wide array of techniques, but
“the main missing piece of the framework is a generic treatment of clause split-
ting” [23, p. 332]. We provide that missing piece, in the form of a splitting frame-
work, and use it to show the completeness of an AVATAR-like architecture.

Our framework has five layers, linked by refinement. The first layer consists
of a refutationally complete base calculus, such as resolution or superposition. It
must be presentable as an inference system and a redundancy criterion.

From a base calculus, we derive a splitting calculus (Sect. 3). This extends
the base calculus with splitting and inherits the base’s completeness. It works
on A-clauses or A-formulas C←A, where A is a set of propositional literals.

Using the saturation framework, we can prove the dynamic completeness
of an abstract prover, formulated as a transition system, that implements the
splitting calculus. However, this ignores a vital component of AVATAR: the SAT
solver. AVATAR considers only inferences involving A-formulas whose assertions
are true in the current propositional model. The role of the third layer is to reflect
this behavior. A model-guided prover operates on states of the form (J,N ), where
J is a propositional model and N is a set of A-formulas (Sect. 4).

The fourth layer introduces AVATAR’s locking mechanism (Sect. 5). With
locking, an A-formula D←B can be temporarily disabled by another A-formula
C←A if C subsumesD, even if A 6⊆ B. Here we make a first discovery: AVATAR-
style locking compromises completeness and must be curtailed.

Finally, the fifth layer is an AVATAR-based prover (Sect. 6). This refines the
locking model-guided prover of the fourth layer with the given clause procedure,
which saturates an A-formula set by distinguishing between active and passive
A-formulas. Here we make another discovery: Selecting A-formulas fairly is not
enough to guarantee completeness. We need a stronger criterion.

In a hypothetical tête-à-tête with the designers of labeled splitting, they
might gently point out that by pioneering the use of a propositional model,
including locking, they almost invented AVATAR themselves. Likewise, develop-
ers of SMT solvers might be tempted to claim that Voronkov merely reinvented
SMT. To investigate such questions, we apply our framework to splitting without
backtracking, labeled splitting, and SMT with quantifiers (Sect. 7). This gives
us a solid basis for comparison as well as some new theoretical results.

A technical report [8] is available with the proofs, several counterexamples,
and further details. A formalization using Isabelle/HOL [16] is underway.
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2 Preliminaries

Our framework is parameterized by abstract notions of formulas, consequence
relations, inferences, and redundancy. We largely follow the conventions of Wald-
mann et al. [23]. A-formulas generalize Voronkov’s A-clauses [22].

Formulas. A set F of formulas is a set that contains a distinguished element ⊥
denoting falsehood. A consequence relation |= ⊆ (P(F))

2 has the following prop-
erties for all M,N,P,Q ⊆ F and C,D ∈ F: (D1) {⊥} |= ∅; (D2) {C} |= {C};
(D3) if M ⊆ N and P ⊆ Q, then M |= P implies N |= Q; (D4) if M |= P and
N |= Q∪{C} for every C ∈M and N ∪{D} |= Q for every D ∈ P, then N |= Q.
The intended meaning of M |= N is

∧
M −�→

∨
N . From |=, we can easily derive

a relation understood as
∧
M −�→

∧
N , as required by the saturation framework.

The |= notation can be extended to allow negation on either side. Let F∼ be
defined as F ] {∼C | C ∈ F∼} such that ∼∼C = C. Given M,N ⊆ F∼ , we
have M |= N if and only if {C ∈ F | C ∈M} ∪ {C ∈ F | ∼C ∈ N} |= {C ∈ F |
∼C ∈M} ∪ {C ∈ F | C ∈ N}.

Following the saturation framework [23, p. 318], we distinguish between the
consequence relation |= used for stating refutational completeness and a possibly
stronger consequence relation |≈ for soundness. We require that |≈ is compact.

Example 2. In clausal first-order logic with equality, the formulas in F con-
sist of clauses over a signature Σ. Each clause C is a finite multiset of literals
L1, . . . , Ln written C = L1 ∨ · · · ∨ Ln. Each literal L is either an atom or its
negation (¬), and each atom is an unoriented equation s ≈ t. We have M |= N
if and only if every Σ-model of M also satisfies at least one clause in N.

Calculi and Derivations. A refutational calculus (Inf ,Red) combines a set of
inferences Inf and a redundancy criterion Red . We refer to Waldmann et al. [23]
for the precise definitions. Recall in particular that Inf (N) is the set of inferences
from N , Inf (N,M) = Inf (N ∪ M) \ Inf (N \M), N is saturated w.r.t. Inf and
Red I if Inf (N) ⊆ Red I(N), and (Inf ,Red) is statically (refutationally) complete
(w.r.t. |=) if ⊥ ∈ N for every N |= {⊥} saturated w.r.t. Inf and Red I.

Let (Xi)i be a sequence of sets. Its limit inferior is X∞ = lim infj→∞Xj =⋃
i

⋂
j≥iXj , and its limit superior is X∞ = lim supj→∞Xj =

⋂
i

⋃
j≥iXj . The

elements of X∞ are called persistent. A sequence (Ni)i over P(F) is weakly fair
w.r.t. Inf and Red I if Inf (N∞) ⊆

⋃
i Red I(Ni) and strongly fair if (Inf (Ni))

∞ ⊆⋃
i Red I(Ni). Given a relation �, a �-derivation is an infinite sequence such that

xi � xi+1 for every i. Finite runs can be extended to derivations via stuttering.
Let �RedF

⊆ (P(F))2 be the relation such that M �RedF
N if and only if M \

N ⊆ RedF(N). The calculus (Inf ,Red) is dynamically (refutationally) complete
(w.r.t. |=) if for every �RedF -derivation (Ni)i that is weakly fair w.r.t. Inf and
Red I and such that N0 |= {⊥}, we have ⊥ ∈ Ni for some i.

A-Formulas. We fix throughout a countable set V of propositional variables
v0, v1, . . . . For each v ∈ V, let ¬v ∈ ¬V denote its negation, with ¬¬v = v. We
assume that a formula fml(v) ∈ F is associated with each v ∈ V. Intuitively,
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v approximates fml(v) at the propositional level. This definition is extended so
that fml(¬v) = ∼fml(v). An assertion a ∈ A = V ∪ ¬V is either a propositional
variable v or its negation ¬v. Given a formula C ∈ F∼ , let asn(C) denote the
set of assertions a ∈ A such that {fml(a)} |≈ {C} and {C} |≈ {fml(a)}.

A propositional interpretation J ⊆ A is a set such that for every v ∈ V,
exactly one of v ∈ J and ¬v ∈ J holds. We reserve the letter J for interpretations,
and define fml(J) = {fml(a) | a ∈ J}.

An A-formula over a set F of base formulas and an assertion set A is a pair
C = (C,A) ∈ AF = F×Pfin(A), written C←A, where C is a formula and A is a
finite set of assertions {a1, . . . , an} understood as an implication a1∧· · ·∧an −�→
C. We identify C←∅ with C and define the projection bC←Ac = C. Moreover,
N⊥ is the set consisting of all A-formulas of the form ⊥←A ∈ N . We call such
A-formulas propositional clauses. Note the use of calligraphic letters (e.g., C,N )
to range over A-formulas and sets of A-formulas.

We say that C ← A ∈ AF is enabled in J if A ⊆ J. A set of A-formulas is
enabled in J if all of its members are enabled in J. The enabled projection NJ ⊆
bNc consists of the projections bCc of all A-formulas C enabled in J. Analogously,
the enabled projection Inf J ⊆ bInf c of a set Inf of AF-inferences consists of the
projections bιc of all inferences ι ∈ Inf whose premises are all enabled in J.

A propositional interpretation J is a propositional model of N⊥, written J |=
N⊥, if ⊥ /∈ (N⊥)J.Moreover, we write J |≈ N⊥ if ⊥ /∈ (N⊥)J or fml(J) |≈ {⊥}. A
set N⊥ is propositionally satisfiable if there exists an interpretation J such that
J |= N⊥. In contrast with consequence relations, propositional modelhood |=
interprets the set N⊥ conjunctively: J |= N⊥ is understood as J |=

∧
N⊥.

Finally, we lift |= and |≈ from P(F) to P(AF): M |= N if and only if
MJ |= bNc for every J in which N is enabled, and M |≈ N if and only if
fml(J) ∪MJ |≈ bNc for every J in which N is enabled.

Example 3. In the original AVATAR [22], the connection between first-order
clauses and assertions takes the form of a function [ ] : F→ A. The encoding is
such that [¬C] = ¬[C] for every ground unit clause C and [C] = [D] if and only if
C is syntactically equal to D up to variable renaming. This can be supported in
our framework by letting fml(v) = C for some C such that [C] = v, for every v.

3 Splitting Calculi

Let F be a set of base formulas equipped with ⊥, |=, and |≈. The relation |≈ is
assumed to be nontrivial: (D5) ∅ 6|≈ ∅. LetA be a set of assertions overV andAF
be the set of A-formulas over F andA. Let (FInf ,FRed) be a base calculus for F,
where FRed is a redundancy criterion that additionally satisfies (1) an inference
is FRed I-redundant if one of its premises is FRedF-redundant; (2)⊥ /∈ FRedF(N)
for every N ⊆ F; and (3) C ∈ FRedF({⊥}) for every C 6= ⊥. These requirements
can easily be met by a well-designed redundancy criterion [1, Sect. 4.3].

Below, we will define the splitting calculus induced by the base calculus. We
will see that it not only is statically and dynamically complete w.r.t. |=, but also
meets weaker, “local completeness” criteria that capture model switching.
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The Inference Rules. We start with the mandatory inference rules.

Definition 4. The splitting inference system SInf consists of all instances of

(Ci←Ai)
n
i=1

Base
D←A1 ∪ · · · ∪An

(⊥←Ai)
n
i=1

Unsat
⊥

For Base, the side condition is (Cn, . . . , C1, D) ∈ FInf . For Unsat, the side
condition is that {⊥←A1, . . . ,⊥←An} is propositionally unsatisfiable.

In addition, the following optional inference rules can be used:

C←A
Split

⊥← {¬a1, . . . ,¬an} ∪A (Ci←{ai})ni=1

(⊥←Ai)
n
i=1 C←A

Collect
(⊥←Ai)

n
i=1

(⊥←Ai)
n
i=1 C←A ∪B

Trim
(⊥←Ai)

n
i=1 C←A

(⊥←Ai)
n
i=1

StrongUnsat
⊥

C←A
Approx

⊥← {¬a} ∪A
Tauto

C←A

The following side conditions apply. For Split: C 6= ⊥ is splittable into C1, . . . ,
Cn and ai ∈ asn(Ci) for each i. A formula C is splittable into two or more
formulas C1, . . . , Cn if {C} |≈ {C1, . . . , Cn} and C ∈ FRedF({Ci}) for each i.
For Collect: C 6= ⊥ and {⊥ ← Ai}ni=1 |≈ {⊥ ← A}. For Trim: C 6= ⊥ and
{⊥←Ai}ni=1 ∪ {⊥←A} |≈ {⊥←B}. For StrongUnsat: {⊥←Ai}ni=1 |≈ {⊥}.
For Approx: a ∈ asn(C). For Tauto: |≈ {C←A}.

The three rules identified by double bars are simplifications; they replace
their premises with their conclusions in the current A-formula set. The premises’
removal is justified by SRedF, defined below. Also note that Base preserves the
soundness of FInf w.r.t. |≈ and that the other rules are sound w.r.t. |≈.

The Split rule performs an n-way case split on C. Each case Ci is approxi-
mated by an assertion ai. The first conclusion expresses that the case distinction
is exhaustive. The n other conclusions assume Ci if its approximation ai is true.
In a clausal prover, typically C = C1 ∨ · · · ∨ Cn, where the subclauses Ci have
mutually disjoint sets of variables and form a maximal split.

Collect and Trim do some garbage collection. StrongUnsat is a variant
of Unsat that uses |≈ instead of |=. StrongUnsat might correspond to invoking
an SMT solver [3] (|≈) with a time limit, falling back on a SAT solver (|=).
Approx can be used to make any derived A-formula visible to |≈. Tauto allows
communication in the other direction, from the SAT solver to the calculus.

Example 5. Suppose the base calculus is first-order resolution [2] and the initial
clauses are ¬p(a), ¬q(z, z), and p(x) ∨ q(y, b), as in Example 1. Split replaces
the last clause by ⊥← {¬v0,¬v1}, p(x)← {v0}, and q(y, b)← {v1}. Two Base
inferences then generate ⊥← {v0} and ⊥← {v1}. Finally, Unsat generates ⊥.
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The Redundancy Criterion. Next, we lift the base redundancy criterion.

Definition 6. The splitting redundancy criterion SRed = (SRed I,SRedF) is
specified as follows. An A-formula C←A ∈ AF is redundant, written C←A ∈
SRedF(N ), if (1) C ∈ FRedF(NJ) for every propositional interpretation J ⊇ A
or (2) there exists an A-formula C←B ∈ N with B ⊂ A. An inference ι ∈ SInf
is redundant, written ι ∈ SRed I(N ), if (1) ι is a Base inference and {ι}J ⊆
FRed I(NJ) for every J or (2) ι is an Unsat inference and ⊥ ∈ N .

SRed qualifies as a redundancy criterion. It can justify the deletion of A-
formulas that are propositionally tautological. It also allows other simplifications,
as long as the assertions on A-formulas used to simplify a given C ← A are
contained in A. If the base criterion FRedF supports subsumption, this also
extends to A-formulas: D ← B ∈ SRedF({C ← A}) if D is strictly subsumed
by C and B ⊇ A, or if C = D and B ⊃ A.

Local Saturation. It is not difficult to show that if (FInf ,FRed) is statically
complete, then (SInf ,SRed) is statically and hence dynamically complete. How-
ever, this result fails to capture a key aspect of most splitting architectures. Since
�SRedF-derivations have no notion of current split branch or model J, they must
also perform disabled inferences. To respect enabledness, we need a weaker no-
tion of saturation. If an A-formula set is consistent, it should suffice to saturate
w.r.t. a single propositional model. In other words, if no A-formula ⊥←A ⊆ J is
derivable for some model J |= N⊥, the prover should be allowed to give a verdict
of “consistent.” We will refer to such model-specific saturations as local .

Definition 7. A set N ⊆ AF is locally saturated w.r.t. SInf and SRed I if either
⊥ ∈ N or there exists J |= N⊥ such that NJ is saturated w.r.t. FInf and FRed I.

Theorem 8 (Strong static completeness). Assume (FInf ,FRed) is stati-
cally complete. Given a set N ⊆ AF that is locally saturated w.r.t. SInf and
SRed I and such that N |= {⊥}, we have ⊥ ∈ N .
Example 9. Consider the A-clause set {⊥←{¬[p(x)],¬[q(y)]}, p(x)←{[p(x)]},
q(y)←{[q(y)]}, ¬q(a)} expressed using AVATAR conventions. It is not saturated
for resolution, because the conclusion ⊥← {[q(y)]} of resolving the last two A-
clauses is missing, but it is locally saturated with J ⊇ {[p(x)],¬[q(y)]}.
Definition 10. A sequence (Ni)i of sets of A-formulas is locally fair w.r.t. SInf
and SRed I if either ⊥ ∈ Ni for some i or there exists J |= (N∞)⊥ such that
FInf ((N∞)J) ⊆

⋃
i FRed I((Ni)J).

Theorem 11 (Strong dynamic completeness). Assume (FInf ,FRed) is
statically complete. Given an �SRedF-derivation (Ni)i that is locally fair w.r.t.
SInf and SRed I and such that N0 |= {⊥}, we have ⊥ ∈ Ni for some i.

In Sects. 4 to 6, we will review three transition systems of increasing com-
plexity, culminating with an idealized specification of AVATAR. They will be
linked by a chain of stepwise refinements, like pearls on a string. All derivations
using these will correspond to �SRedF-derivations, and their fairness criteria will
imply local fairness. Consequently, by Theorem 11, they will all be complete.
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4 Model-Guided Provers

AVATAR and other splitting architectures maintain a model of the propositional
clauses, which represents the split tree’s current branch. We can capture this
abstractly by refining �SRedF

-derivations to incorporate a propositional model.
The states are now pairs (J,N ), where J is a propositional model and N ⊆

AF. Initial states have the form (J, N), where N ⊆ F. The model-guided prover
MG is defined by the following transition rules:

Derive (J, N ]M) =⇒MG (J, N ]M′) ifM⊆ SRedF(N ]M′)
Switch (J, N ) =⇒MG (J′, N ) if J′ |= N⊥
StrongUnsat (J, N ) =⇒MG (J, N ∪ {⊥}) if N⊥ |≈ {⊥}

From a =⇒MG-derivation, we obtain a �SRedF-derivation by simply erasing
the J components. The Derive rule can add new A-formulas and delete redun-
dant A-formulas. J should be a model of N⊥ most of the time; when it is not,
Switch can be used to switch model or StrongUnsat to finish the refutation.

Example 12. Let us revisit Example 5. Initially, let J0 = {¬v0,¬v1}. After the
split, we have ¬p(a), ¬q(z, z), p(x)←{v0}, q(y, b)←{v1}, and ⊥←{¬v0,¬v1}.
The only option is to switch model. We take J1 = {v0,¬v1}. We can then derive
⊥← {v0}. Since J1 6|= ⊥← {v0}, we switch to J2 = {¬v0, v1}, where we derive
⊥← {v1}. Finally, we detect that the propositional clauses are unsatisfiable.

We need a fairness criterion for MG that implies local fairness of the under-
lying �SRedF

-derivation. The latter requires a witness J but gives us no hint as
to where to look for one. Our solution involves a topological concept: J is a limit
point in (Ji)i if there exists a subsequence (J′i)i of (Ji)i such that J = J′∞ = J′∞.

Example 13. Let (Ji)i be the sequence such that J2i ∩V = {v1, v3, . . . , v2i−1}
(i.e., v1, v3, . . . , v2i−1 are true and the other variables are false) and J2i+1 =
(J2i\{¬v2i})∪{v2i}. Although it is not in the sequence, the interpretation J∩V =
{v1, v3, . . .} is a limit point. The associated split tree is shown in Fig. 1. The direct
path from the root to a node Ji specifies the assertions that are true in Ji.

Example 14. Let (Ji)i be such that J0∩V = ∅, J4i+1∩V = {v0}∪{4j+3 | j <
i}, J4i+2 ∩V = {v0, v4i+2} ∪ {4j + 3 | j < i}, J4i+3 ∩V = {4j + 1 | j ≤ i}, and
J4i+4 ∩V = {4j + 1 | j ≤ i} ∪ {v4i+4}. This sequence has two limit points: J′ =
lim infi→∞ J4i+1 and J′′ = lim infi→∞ J4i+3. The split tree is depicted in Fig. 2.

Basic topology tells us that every sequence has a limit point. No matter how
erratically the prover switches branches, it will systematically explore one of
them. It then suffices to perform the base FInf -inferences fairly in that branch:

Definition 15. An =⇒MG-derivation (Ji,Ni)i is fair if either (1) ⊥ ∈ Ni for
some i or (2) Ji |= (Ni)⊥ for infinitely many indices i and there exists a limit
point J of (Ji)i such that FInf ((N∞)J) ⊆

⋃
i FRed I((Ni)J).

Fairness of an =⇒MG-derivation implies fairness of the underlying �SRedF-
derivation. A well-behaved propositional solver, as in labeled splitting, always
gives rise to a single limit point J∞, which can be taken for J in Definition 15.

7



J0

J1

v0

J2

J3

v2

J4

J5

v4
. . .

J

v3

v1

Fig. 1: A split tree with a
single infinite branch

J0

J1

J2

v2

J5

J6

v6
. . .

J′

v3

v0
J3

J4

v4

J7

J8

v8
. . .

J′′

v5

v1

Fig. 2: A split tree with two infinite
branches

By contrast, an unconstrained solver, as supported by AVATAR, can produce
multiple limit points. Then it is more challenging to ensure fairness.

Example 16. Consider the consistent set consisting of ¬p(x), p(a) ∨ q(a), and
¬q(y)∨p(f(y))∨q(f(y)). Splitting the second clause into p(a) and q(a) and resolv-
ing q(a) with the third clause yields p(f(a))∨q(f(a)). This process can be iterated.
Now suppose that v2i and v2i+1 are associated with p(fi(a)) and q(fi(a)), respec-
tively. If we split every emerging p(fi(a)) ∨ q(fi(a)) and the SAT solver always
makes v2i true first, we end up with the situation of Example 13 and Fig. 1. For
the limit point J, all FInf -inferences are performed. Thus, the derivation is fair.

Example 17. We build a clause set from two copies of Example 16, where each
clause C from each copy i ∈ {1, 2} is extended to ¬ri ∨ C. We add the clause
r1∨r2 and split it as our first move. From there, each branch imitates Example 16.
A SAT solver might jump back and forth, as in Example 14 and Fig. 2. Even
if A-clauses get disabled and re-enabled infinitely often, we must perform all
nonredundant inferences in at least one of the two limit points (J′ or J′′).

5 Locking Provers

Next, we refine the model-guided prover into a locking prover that temporarily
locks away A-formulas that are redundant locally w.r.t. some J but not globally.
The states are triples (J,N ,L), with L ⊆ A×AF. Intuitively, (B, C←A) ∈ L
means that C←A is “locally redundant” in interpretations J ⊇ B. The function
T U erases the locks: TLU = {C | (B, C) ∈ L for some B}. Initial states have the
form (J, N, ∅), where N ⊆ F. The locking prover is defined by these two rules:

Lift (J,N ,L) =⇒L (J′,N ′ ∪ TUU,L \ U)
if (J,N ) =⇒MG (J′,N ′) and U = {(B, C←A) ∈ L | B 6⊆ J′ andA ⊆ J′}

Lock (J,N ] {C←A},L) =⇒L (J,N ,L ∪ {(B, C←A)})
if B ⊆ J and C ∈ FRedF(NJ′) for all J′ ⊇ A ∪B

We note that =⇒L-derivations refine =⇒MG-derivations, with states (J,N ,L)
mapped to (J,N ∪ TLU).
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Locking can cause incompleteness, because an A-formula can be locally re-
dundant at every point in the derivation and yet not be so at any limit point,
thereby breaking local saturation. For example, if we have derived p(x)←{¬vk}
for every k, then p(c) it is locally redundant in any J that contains ¬vk. For
the models Ji = {v1, . . . , vi,¬vi+1, . . .}, the clause p(c) would always be locally
redundant and ignored. Yet p(c) might not be locally redundant at the unique
limit point J = V. We could rule out this counterexample by requiring that
derivations are strongly fair—that is, every inference possible infinitely often
must eventually be made redundant. However, we have found a counterexample
showing that strong fairness does not ensure completeness [8, Example 46]. It
would seem that this counterexample could arise with Vampire if the underlying
SAT solver produces this specific sequence of interpretations.

Our solution is as follows. Let (Ji,Ni,Li)i be an =⇒L-derivation, let (J′j)j be
a subsequence of (Ji)i, and let (N ′j)j be the corresponding subsequence of (Ni)i.
For fairness, we now consider N ′∞, the A-formulas persistent in the unlocked
subsequence (N ′j)j . By contrast, fairness of =⇒MG-derivations could use N∞.

Definition 18. An =⇒L-derivation (Ji,Ni,Li)i is fair if either (1) ⊥ ∈
⋃

iNi or
(2) Ji |= (Ni)⊥ for infinitely many indices i and there exists a subsequence (J′j)j
converging to a limit point J such that FInf ((N ′∞)J ∪ ((lim supj→∞TL′jU)J \
TL′∞U)J) ⊆

⋃
i FRed I((Ni∪TLiU)J), where (N ′j)j and (L′j)j correspond to (J′j)j .

Fairness of an =⇒L-derivation implies fairness of the corresponding =⇒MG-
derivation. The condition on the sets L′j ensures that inferences from A-formulas
that are locked infinitely often, but not infinitely often with the same lock, are
redundant at the limit point. This is subtle, but if we know that each A-formula
is locked at most finitely often, then lim supj→∞TL′jU = TL′∞U and the inclusion
in the definition above simplifies to FInf ((N ′∞)J) ⊆

⋃
i FRed I((Ni ∪ TLiU)J).

6 AVATAR-Based Provers

AVATAR was unveiled in 2014 by Voronkov [22]. Since then, he and his colleagues
studied many options and extensions [3,17]. A second implementation, in Lean’s
super tactic, is due to Ebner [9]. Here we attempt to capture AVATAR’s essence.

The abstract AVATAR-based prover we define in this section extends the
locking prover L with a given clause procedure [13]. A-formulas are moved in
turn from the passive to the active set, where inferences are performed. The
heuristic for choosing the next given A-formula to move is guided by timestamps
indicating when the A-formulas were derived, to ensure fairness.

Let TAF = AF×N be the set of timestamped A-formulas. Given N ⊆ TAF,
we define *N+ = {C | (C, t) ∈ N for some t}, and we overload existing notations
to erase timestamps. Thus, bNc = b*N+c, N⊥ = *N+⊥, and so on. Note that
we use a new set of calligraphic letters (e.g., C,N) to range over timestamped
A-formulas and A-formulas sets. Using the saturation framework [23, Sect. 3],
we lift (SInf ,SRed) to a calculus (TSInf ,TSRed) on TAF with the tiebreaker
order > on timestamps, so that (C, t+ k) ∈ TSRedF({(C, t)}) for any k > 0.
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A state is a tuple (J,A,P,Q,L) ∈ P(A) × P(TAF)3 × P(TAF × Pfin(A)),
where A, P, and Q are respectively the sets of active, passive, and other (dis-
abled or propositional) timestamped A-formulas, and L is the set of locked time-
stamped A-formulas such that (1) A⊥ = P⊥ = ∅, (2) A ∪ P is enabled in J, and
(3) QJ ⊆ {⊥}. The AVATAR-based prover AV is defined as follows:

Infer (J,A,P ] {C},Q,L) =⇒AV (J,A ∪ {C},P′,Q′,L)
if TSInf (A, {C}) ⊆ TSRed I(A ∪ {C} ∪ P′ ∪ Q′), P ⊆ P′,
and Q ⊆ Q′

Process (J,A,P,Q,L) =⇒AV (J,A′,P′,Q′,L)
if A ⊇ A′

and (A\A′) ∪ (P\P′) ∪ (Q\Q′) ⊆ TSRedF(A′ ∪ P′ ∪ Q′)

Switch (J,A,P,Q,L) =⇒AV (J′,A′,P′ ∪ TUU,Q′,L \ U)
if J 6|= Q⊥, J

′ |= Q⊥, A
′ = {C ∈ A | C is enabled in J′},

U = {(B, (C←A, t)) ∈ L | B 6⊆ J′ and A ⊆ J′}, and
A ∪ P ∪ Q = A′ ∪ P′ ∪ Q′

StrongUnsat (J,A,P,Q,L) =⇒AV (J,A,P,Q ∪ {(⊥, t)},L) if Q⊥ |≈ ⊥
LockA (J,A ] {(C←A, t)},P,Q,L) =⇒AV

(J,A,P,Q,L ∪ {(B, (C←A, t))})
if B ⊆ J and C ∈ FRedF((A ∪ P)J′) for every J′ ⊇ A ∪B

There is also a LockP rule that is identical to LockA except that it starts in
the state (J,A,P ] {(C←A, t)},Q,L). An AV-derivation is well timestamped if
every A-formula introduced by a rule is assigned a unique timestamp.

Let (Ji,Ai,Pi,Qi,Li)i be an =⇒AV-derivation. It is easy to see that it refines
the =⇒L-derivation (Ji, *Ai ∪ Pi ∪ Qi+, *Li+)i and that the saturation invariant
TSInf (Ai) ⊆ TSRed I(Ai ∪ Pi ∪ Qi ∪ TLiU) holds if A0 = ∅.

In contrast with nonsplitting provers, for AV fairness w.r.t. formulas does not
imply fairness w.r.t. inferences. A problematic scenario involves two premises
C,D of an inference ι and four transitions repeated forever, possibly with other
steps interleaved: Infer makes C active; Switch disables it; Infer makes D

active; Switch disables it. Even though C and D are selected in a strongly fair
fashion, ι is never performed. We need an even stronger fairness criterion.

Definition 19. An =⇒AV-derivation (Ji,Ai,Pi,Qi,Li)i is fair if (1) ⊥∈*
⋃

i Qi+
or (2) Ji |= (Qi)⊥ for infinitely many indices i and there exists a subsequence
(J′j) converging to a limit point J′∞ such that (3) lim infj→∞ TSInf (A′j ,P

′
j) = ∅

and (4) (lim supj→∞TL′jU)J \ TL′∞UJ ⊆
⋃

i FRedF((Ai ∪ Pi ∪ Qi ∪ TLiU)J).

Condition (3) states that all inferences involving passive A-formulas are re-
dundant at the limit point. It would not suffice to require P′∞ = ∅ because
A-formulas can move back and forth between A, P, and Q, as we just saw. Con-
dition (4) is an additional condition on locks similar to the one in Definition 18.
If the =⇒AV-derivation is fair, the corresponding =⇒L-derivation is also fair.

Many selection strategies are combinations of basic strategies, such as choos-
ing the smallest formula by weight or the oldest by age. We capture such strate-
gies using selection orders l. Intuitively, C l D if the prover will always select
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C before D if both are present. We use two selection orders: lTAF, based on
timestamps, must be followed infinitely often; lF must be followed otherwise.
For the first one, we can use lage defined so that (C, t) lage (C′, t′) if t < t′.

Definition 20. Let X be a set. A selection order l on X is an irreflexive and
transitive relation such that {y | y 6m x} is finite for all x ∈ X.

The intersection of two orders l1 and l2 corresponds to the nondeterministic
alternation between them, at the prover’s discretion.

To ensure completeness, we must restrict the inferences that the prover may
perform; otherwise, it could derive infinitely many A-formulas with different
assertions, causing it to switch between two branches of the split tree without
making progress. Given N ⊆ AF, let dNe = {A | C←A ∈ N for some C}.

Definition 21. A function F : P(AF)→ P(AF) is strongly finitary if bF (N )c
and

⋃
dF (N )e \

⋃
dNe are finite for any N ⊆ AF such that bNc is finite.

Intuitively, a strongly finitary function F returns finitely many base formu-
las and finitely many new assertions, although it may return infinitely many
A-formulas. Clearly, F (N ) is finite for any finite N ⊆ AF. If FInf (N) is finite
for any finite N ⊆ F, then performing SInf -inferences is strongly finitary. De-
terministic Split rules, such as AVATAR’s, are also strongly finitary. We can
lift a strongly finitary F to any N ⊆ TAF by taking FTAF(N) = F (*N+)×N. If
F and G are strongly finitary, then so is N 7→ F (N ) ∪G(N ).

Simplification rules used by the prover must be restricted even more to ensure
completeness, because they can lead to new splits and assertions. For example,
simplifying p(x ∗ 0) ∨ p(x) to p(0) ∨ p(x) transforms an unsplittable clause into
a splittable one. If simplification were to produce infinitely many such clauses,
the prover might split and switch models forever without making progress.

Definition 22. Let ≺ be a well-founded relation on F, and let � be its reflexive
closure. A function S : AF→ P(AF) is a strongly finitary simplification bound
for ≺ if N 7→

⋃
C∈N S(C) is strongly finitary and bC′c � bCc for all C′ ∈ S(C).

The prover may simplify an A-formula C to C′ only if C′ ∈ S(C). It may also
delete C. Strongly finitary simplification bounds are closed under unions, allow-
ing the combination of simplification techniques based on ≺. For superposition,
a natural choice for ≺ is the clause order. The key property of strongly fini-
tary simplification bounds is that if we saturate a finite set of A-formulas w.r.t.
simplifications, the saturation is also finite.

Example 23. Let F be the set of first-order clauses and S(C←A) = {C ′←A′ |
C ′ is a subclause of C and A′ ⊆ A}. Then S is a strongly finitary simplification
bound. This S covers many simplification techniques, including elimination of
duplicate literals, deletion of resolved literals, and subsumption resolution.

Example 24. If the Knuth–Bendix order [12] is used and all weights are pos-
itive, then S(C ← A) = {C ′ ← A′ | C ′ ≺ C and A′ ⊆ A} is a strongly finitary
simplification bound. This can be used to cover demodulation.
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Equipped with the above definitions, we introduce a fairness criterion that is
more concrete and easier to apply than fairness of =⇒AV-derivations. We could
refine AV further and use this criterion to show the completeness of an imperative
procedure such as Voronkov’s extended Otter loop [22, Fig. 3], thus showing that
Vampire with AVATAR is complete if locking is sufficiently restricted.

Lemma 25. Let I be a strongly finitary function, and let S be a strongly fini-
tary simplification bound. Then a well-timestamped =⇒AV-derivation (Ji,Ai,Pi,
Qi,Li)i is fair if all of the following conditions hold:

1. lTAF is a selection order on
⋃

i Pi, and lF is a selection order on F;
2. A0 = L0 = ∅ and P0 ∪ Q0 is finite;
3. for every Infer transition, either C is lTAF-minimal in P or bCc is lF-

minimal in bPc;
4. for every Infer transition, P′ ∪ Q′ ⊆ ITAF(A ∪ {C});
5. for every Process transition, P′ ∪ Q′ ⊆ STAF(A ∪ P ∪ Q ∪ TLU);
6. if Ji 6|= (Qi)⊥, then eventually Switch or StrongUnsat occurs;
7. if Pi 6= ∅, then eventually Infer, Switch or StrongUnsat occurs;
8. there are infinitely many indices i such that either Pi = ∅ or Infer chooses

a lTAF-minimal C at i;
9. (lim supj→∞TL′jU)J \ TL′∞UJ ⊆

⋃
i FRedF((Ai ∪Pi ∪Qi ∪ TLiU)J) for every

subsequence converging to a limit point.

7 Application to Other Architectures

AVATAR may be the most natural application of our framework, but it is not
the only one. Below we complete the picture by studying splitting without back-
tracking, labeled splitting, and SMT with quantifiers.

Splitting without Backtracking. Before AVATAR, Riazanov and Voronkov
[20] had already experimented with splitting in Vampire in a lighter variant
without backtracking. They based their work on ordered resolution O with se-
lection [2]. Weidenbach [24, end of Sect. 4.5] independently outlined the same
technique. The basic idea is to extend the signature Σ with a countable set P of
nullary predicate symbols and to augment the base calculus with a binary split-
ting rule that replaces a Σ-clause C ∨D with two ΣP-clauses C ∨ p and D ∨¬p.
Riazanov and Voronkov require that the precedence≺makes all P-literals smaller
than the Σ-literals. Binary splitting is then a simplification. They also extended
the selection function of the base calculus to support P-literals. Their parallel
function imitates as much as possible the original selection.

Remarkably, the calculus OP is closely related to an instance of our frame-
work. Let F be the set of Σ-clauses, with the empty clause as ⊥. Let O = (FInf ,
FRed) be the base calculus. We take V = P. Let LA = (SInf ,SRed), whose name
stands for lightweight AVATAR, be the induced splitting calculus. Lightweight
AVATAR amounts to the splitting architecture Cruanes implemented in Zip-
perposition [7, Sect. 2.5]. Binary splitting can be realized in LA as a Split-like
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simplification rule. The calculi OP and LA disagree slightly because OP’s order
≺ can break ties using P-literals and because LA can detect unsatisfiability early
using the Unsat rule. Despite this, LA is tighter in the sense that saturation
w.r.t. LA implies saturation w.r.t. OP but not vice versa.

Labeled Splitting. Labeled splitting, as originally described by Fietzke and
Weidenbach [10] and implemented in SPASS, is a first-order resolution-based
calculus with binary splitting that traverses the split tree in a depth-first way,
using an elaborate backtracking mechanism inspired by CDCL [15]. It works on
states (Ψ,N ), where Ψ is a stack storing the current state of the split tree and N
is a set of labeled clauses—clauses annotated with finite sets of natural numbers.

We model labeled splitting as an instance of the locking prover L based
on the splitting calculus LS = (SInf ,SRed) induced by the resolution calculus
R = (FInf ,FRed), where |= and |≈ are as in Example 2 and V =

⋃
i∈N{li, ri, si}.

A-clauses correspond to labeled clauses. Splits are identified by unique split lev-
els. Given a split on C ∨D with level k, lk ∈ asn(C) and rk ∈ asn(D) represent
the left and right branch. In practice, the prover would dynamically extend fml
so that fml(lk) = C and fml(rk) = D.

When splitting, if we simply added ⊥←{¬lk,¬rk}, we would always need to
consider either C←{lk} or D←{rk}, depending on the interpretation. However,
labeled splitting can undo splits when backtracking. Yet fairness would require us
to perform inferences with either C or D even when labeled splitting would not.
We solve this as follows. Let > = ∼⊥. We introduce the variable sk ∈ asn(>)
so that we can enable or disable the split. The StrongUnsat rule then knows
that sk is true, but we can still switch to propositional models that disable both
C and D. A-clauses are then split using the following binary variant of Split:

C ∨D←A
SoftSplit

⊥← {¬lk,¬rk, sk} C←A ∪ {lk} D←A ∪ {rk}
where C and D share no variables and k is the next split level. Unlike AVATAR,
labeled splitting keeps the premise and might split it again with another level.

To emulate the original, the locking prover based on LS must repeatedly
apply the following three steps in any order until saturation:

1. Apply Base to perform an inference from the enabled A-clauses. If an en-
abled ⊥←A is derived with A ⊆

⋃
i{li, ri}, apply Switch or StrongUnsat.

2. Apply Base to simplify or delete an enabled A-clause. Use Lock if necessary
to remove the original A-clause. If an enabled⊥←A is derived, apply Switch
or StrongUnsat.

3. Apply SoftSplit with split level k on an A-clause C. Then use Switch to
enable the left branch and apply Lock on C with sk as the lock.

Switch is powerful enough to support all of Fietzke and Weidenbach’s back-
tracking rules, but to explore the tree in the same order as they do, we must
choose the new model carefully. If a left branch is closed, the model must be
updated so as to disable the splits that were not used to close this branch and
to enable the right branch. If a right branch is closed, the split must be disabled,
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and the model must switch to the right branch of the closest enabled split above
it with an enabled left branch. If a right branch is closed but there is no split
above with an enabled left branch, the entire tree has been visited. Then, a
propositional clause ⊥← A with A ⊆

⋃
i{si} is |=-entailed by the A-clause set,

and StrongUnsat can finish the refutation by exploiting fml(si) = >.
The above strategy helps achieve fairness, because it ensures that there exists

exactly one limit point. The strategy also uses locks in a friendly way. This means
we can simplify the notion of fairness for =⇒L-derivations considerably and ob-
tain a criterion that is almost identical to, but slightly more liberal than, Fietzke
and Weidenbach’s—thereby re-proving the completeness of labeled splitting.

For terminating derivations, their fairness criterion coincides with ours. For
diverging derivations, Fietzke andWeidenbach construct a limit subsequence (Φ′i,
N ′i )i of the derivation (Φi,Ni)i and require that every persistent inference in it
be made redundant, exactly as we do for =⇒L-derivations. The subsequence
consists of all states that lie on the split tree’s unique infinite branch. Locks are
well behaved, with lim supj→∞TL′jU = TL′∞U, because with the strategy above,
once an A-clause is enabled on the rightmost branch, it remains enabled forever.
Our definition of fairness allows more subsequences, although this is difficult to
exploit without bringing in all the theoretical complexity of AVATAR.

SMT with Quantifiers. Satisfiability modulo theories (SMT) solvers based on
DPLL(T ) [15] combine a SAT solver with theory solvers. In the classical setup,
the theories are decidable, and the SMT solver is a decision procedure for the
union of the theories. Some SMT solvers also support quantified formulas via
instantiation at the expense of decidability.

Complete instantiation strategies have been developed for various fragments
of first-order logic [11, 18, 19]. In particular, enumerative quantifier instantia-
tion [18] is complete under some conditions. An SMT solver following such a
strategy ought to be refutationally complete, but this has never been proved.
Although SMT is quite different from the architectures considered above, we
can instantiate our framework to show the completeness of an abstract SMT
solver. The model-guided prover MG will provide a suitable starting point.

Let F be the set of first-order Σ-formulas. We represent the SMT solver’s
underlying SAT solver by the Unsat rule and complement it with an inference
system FInf that includes rules for clausification outside quantifiers, theory rea-
soning, and instantiation. The clausification rules derive C and D from a premise
C ∧D, among others; the theory rules derive ⊥ from some Σ-formula set N such
that N |= {⊥}, ignoring quantifiers; and the instantiation rules derive ϕ(u) from
premises ∀x. ϕ(x), where u is a ground term. For FRed , we take an arbitrary
instance of standard redundancy. Its only purpose is to split disjunctions destruc-
tively. We define the “theories with quantifiers” calculus TQ = (FInf ,FRed). For
|= and |≈, we use entailment in the supported theories including quantifiers.

We use the same approximation function as in AVATAR (Example 3). Let us
call C←A a subunit if C is not a disjunction. Whenever a disjunction C∨D←A
emerges, we immediately apply Split. This delegates clausal reasoning to the
SAT solver. It then suffices to assume that TQ is complete for subunits.
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Theorem 26 (Dynamic completeness). Assume TQ is statically complete
for subunit sets. Let (Ji,Ni)i be a fair =⇒MG-derivation based on TQ. If N0 |=
{⊥} and N∞ contains only subunits, then ⊥ ∈ Nj for some j.

Like AVATAR-based provers, SMT solvers will typically not perform all SInf -
inferences, not even up to SRed I. For decidable theories, a practical fair strategy
is to instantiate quantifiers only if no other rules are applicable.

Our mathematization of AVATAR and SMT with quantifiers exposes their
dissimilarities. With SMT, splitting is mandatory, and there is no subsumption or
simplification, locking, or active and passive sets. And of course, theory inferences
are n-ary and quantifier instantiation is unary, whereas superposition is binary.
Nevertheless, their completeness follows from the same principles.

8 Conclusion

Our splitting framework captures splitting calculi and provers in a general way,
independently of the base calculus. Users can conveniently derive a dynamic
refutational completeness result for a splitting prover based on a given stati-
cally refutationally complete calculus. As we developed the framework, we faced
some tension between constraining the SAT solver’s behavior and the saturation
prover’s. We preferred to constrain the prover, because the prover is typically
easier to modify than an off-the-shelf SAT solver. To our surprise, we discovered
counterexamples related to locking, formula selection, and simplification, which
may affect Vampire’s AVATAR implementation, depending on the SAT solver
used. We proposed some restrictions, but alternatives could be investigated.

We found that labeled splitting can be seen as a variant of AVATAR where the
SAT solver follows a strict strategy and propositional variables are not reused
across branches. A benefit of the strict strategy is that its locking preserves
completeness. As for the relation between AVATAR and SMT, there are some
glaring differences, including that splitting is necessary to support disjunctions
in SMT but fully optional in AVATAR. For future work, we could try to complete
the picture by considering other related architectures [4–6,14].
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