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Abstract
We present a collection of formalized results about finite nested multisets, developed using the
Isabelle/HOL proof assistant. The nested multiset order is a generalization of the multiset order
that can be used to prove termination of processes. Hereditary multisets, a variant of nested
multisets, offer a convenient representation of ordinals below ε0. In Isabelle/HOL, both nested and
hereditary multisets can be comfortably defined as inductive datatypes. Our formal library also
provides, somewhat nonstandardly, multisets with negative multiplicities and syntactic ordinals
with negative coefficients. We present applications of the library to formalizations of Goodstein’s
theorem and the decidability of unary PCF (programming computable functions).
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1 Introduction

In their seminal article on proving termination using multisets [15], Dershowitz and Manna
introduced two orders of increasing strength. The multiset order lifts a base partial order
on a set A to finite multisets over A. It forms the basis of the multiset path order, which
has many applications in term rewriting [41] and automatic theorem proving [1]. The nested
multiset order is a generalization of the multiset order that operates on multisets that can be
nested in arbitrary ways. Nesting can increase the order’s strength: If (A,<) has ordinal type
α < ε0, the associated multiset order has ordinal type ωα, whereas the nested order has
ordinal type ε0 = ωω

ω
. . .

.
In this paper, we present formal proofs of the main properties of the nested multiset

order that are useful in applications: preservation of well-foundedness and preservation of
totality (linearity). The proofs are developed in the Isabelle/HOL proof assistant [27]. To
our knowledge, this is the first development of its kind in any proof assistant. Our starting
point is the following inductive datatype of nested finite multisets over a type ′a (Section 4):

datatype ′a nmultiset = Elem ′a | MSet ((′a nmultiset) multiset)

The above Isabelle/HOL command introduces a (unary postfix) type constructor, nmultiset,
equipped with two constructors, Elem : ′a→ ′a nmultiset and MSet : (′a nmultiset)multiset→
′a nmultiset, where ′a is a type variable andmultiset is the type constructor of (finite) multisets.
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11:2 Nested Multisets, Hereditary Multisets, and Syntactic Ordinals

Throughout the paper, we will write “multiset” meaning “finite multiset,” following Isabelle
conventions. The datatype command also introduces a recursor that can be used to define
primitive recursive functions. In addition, the command provides an induction principle,
which allows us to assume, in the MSet NM case, that the desired property holds for all
nested multisets belonging to NM .

The definition of nmultiset exhibits recursion through a non-datatype (multiset). In recent
versions of Isabelle/HOL, recursion is allowed under arbitrary type constructors that are
bounded natural functors [8, 37], a semantic criterion that is met by bounded sets, multisets,
and other functors. This flexibility is absent in other proof assistants. The HOL systems
and Lean support quotient types, which can be used to build multisets from lists; in Agda
and Coq, setoids can be employed instead [3]. However, we argue that datatypes lead to
simpler definitions and proofs than any of the alternatives.

If we omit the Elem constructor, we obtain the hereditary multisets (Section 5):

datatype hmultiset = HMSet (hmultiset multiset)

This type is similar to hereditarily finite sets, a model of set theory without the axiom of
infinity, but with multisets instead of finite sets. It is easy to embed hmultiset in ′a nmultiset,
and using Isabelle’s Lifting and Transfer tools [20], we can lift definitions and results from
the larger type to the smaller type, such as the definition of the nested multiset order.

Hereditary multisets offer a convenient representation for ordinals below ε0 (Section 6).
These are the ordinals that can be expressed syntactically in Cantor normal form:

α ::= ωα1 · c1 + · · ·+ ωαn · cn where ci ∈ N>0 and α1 > · · · > αn

The correspondence with hereditary multisets is straightforward:

α ::= {α1, . . . , α1︸ ︷︷ ︸
c1 occurrences

, . . . , αn, . . . , αn︸ ︷︷ ︸
cn occurrences

}

The coefficients ci are represented by multiset multiplicities, and the ω exponents are the
multiset’s members. Thus:

{} = 0 {0} = {{}} = ω0 = 1 {0, 0, 0} = {{}, {}, {}} = ω0 · 3 = 3
{1} = {{{}}} = ωω

0 = ω1 = ω {ω} = {{{{}}}} = ωω

The standard addition and multiplication operations on ordinals are not commutative—e.g.,
1 +ω = ω 6= ω+ 1. Instead, we formalized the Hessenberg (or natural) operations [34]. These
are more convenient in many applications, and because they share many properties with
natural numbers, they are easier to automate in Isabelle.

When carrying out proofs, we sometimes find ourselves wishing that it would be possible
to subtract an ordinal from another. To support this, we define a type of signed multisets,
or hybrid multisets [2], and use it to represent signed ordinals (Section 7).

We employ our library to formalize two examples that require ordinals or the nested
multiset order: Goodstein’s theorem (Section 8) and the decidability of unary PCF ( Section 9).
Together with colleagues, Blanchette also used the library to formalize a variant of the
transfinite Knuth–Bendix order [4,5]. We gave some thought to proof automation, generalizing
existing simplification procedures and exploiting Isabelle’s arithmetic type classes. Our work
also demonstrates the usefulness of bounded natural functors. The Isabelle theory files are
available as part of the Archive of Formal Proofs [6].
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2 Isabelle/HOL

Isabelle is a generic proof assistant whose metalogic is an intuitionistic fragment of polymor-
phic higher-order logic (simple type theory). Types are built from type variables ′a, ′b, . . .
and type constructors, written infix or postfix (e.g., →, multiset). All types are inhabited.
Terms t, u are built from variables x, constants c, abstractions λx. t, and applications t u.
Constants may be higher-order, i.e., they may be of function type. A formula is a term
of type prop. The metalogical operators are

∧
, =�⇒, and ≡, for universal quantification,

implication, and equality. The notation
∧
x. t is syntactic sugar for

∧
(λx. t).

Isabelle/HOL is the instantiation of Isabelle with classical higher-order logic (HOL)
extended with type classes as its object logic, complete with a Boolean type bool, an equality
predicate =, the usual connectives (¬, ∧, ∨, −�→, ←→) and quantifiers (∀, ∃), and Hilbert’s
choice. HOL formulas, of type bool, are embedded in the metalogic. The distinction between
prop and bool is important operationally, but it is not essential to understand this paper.

Isabelle/HOL offers two primitive definitional mechanisms: The typedef command
introduces a type that is isomorphic to a nonempty subset of an existing type, and the
definition command introduces a constant as equal to an existing term. On top of these,
Isabelle/HOL provides a rich specification language that includes inductive datatypes and
predicates, recursive functions, and their coinductive counterparts, as well as quotient types.

Proofs are expressed either as a sequence of low-level proof methods, called tactics, which
manipulate the proof state directly, or in a declarative format called Isar [39], which allows tac-
tics only as terminal procedures. We generally prefer the more readable Isar style. The main
proof methods are the simplifier, which rewrites terms using conditional oriented equations;
the classical reasoner, which applies introduction and elimination rules; decision procedures
for linear arithmetic; and metis, a complete first-order prover based on superposition. In addi-
tion, the Sledgehammer tool [29] integrates third-party automatic theorem provers. It can be
applied to any proof goal. In case of success, it provides a short Isar proof, often using metis.

3 Multisets

Multisets over ′a are defined in Isabelle’s standard library as isomorphic to the set of
multiplicity functions f that are 0 at all but finitely many points x:

typedef ′a multiset =
{
f : ′a→ nat | finite {x | f x > 0}

}
Values are constructed from the empty multiset {} and the add x A operation. For concrete
multisets, we use standard set notation. The singleton multiset {x} is easy to define in terms
of add and {}. Multiset union ], which adds the multiplicities of its arguments, is an instance
of the polymorphic + : ′a→ ′a→ ′a operator. The relevant + type classes provide a wealth
of lemmas and some proof automation. Other operations include −, ∪, ∩, ⊂, ⊆, <, and ≤.
Given a type ′a equipped with a partial order <, the < operator on multisets corresponds to
the Dershowitz–Manna extension [15]. The extension operator is also available as a function
mult : (′a× ′a) set→ (′a multiset× ′a multiset) set. It is defined as the transitive closure of
the one-step Dershowitz–Manna extension defined by

mult1 R = {(A,B). ∃y B0 X. B = B0 + {y} ∧ A = B0 +X ∧ ∀x ∈X. (x, y) ∈R}

For both R and mult1 R, the smaller value is on the left.
The operation set : ′a multiset → ′a set returns the set of elements in a multiset. The

operation image : (′a→ ′b)→ ′a multiset→ ′b multiset applies a function elementwise to a
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11:4 Nested Multisets, Hereditary Multisets, and Syntactic Ordinals

multiset. It is defined using an iterator on finite sets, adding each mapped element f x with
the multiplicity of x in the initial multiset A (given by countA x):

definition image : (′a→ ′b)→ ′a multiset→ ′b multiset where
image f A = Finite_Set.fold (λx. (add (f x))count A x) {} (set A)

The structure (multiset, image, set, ℵ0) forms a bounded natural functor [8, 37]: image is
the functorial action, set is the natural transformation, and ℵ0 is an upper bound on the
cardinality of the sets returned by set. Induction and recursion through a multiset are
expressed in terms of set and image. The cardinality bound is needed to construct the
datatype as the least fixed point of an isomorphism equation.

Isabelle’s datatypes do not allow genuinely negative occurrences in recursion, since this
cannot be done consistently in HOL. However, some type constructors support both negative
and positive views: ′a multiset can be viewed negatively as a fragment of ′a → nat or
positively as a quotient of ′a list (with respect to the relation “contains the same elements
with the same multiplicities as”). It is this latter view that is fruitful for recursion. It is easy
to see that image then corresponds to the functorial action map on lists.

Isabelle’s multiset theory is not as developed as other areas, such as lists and sets. Our
first contribution has been to introduce some missing concepts and lemmas, which we added
either directly to the Isabelle distribution or collected in a theory file in the Archive of
Formal Proofs [6]. These include a replicate n x operator, which constructs the multiset
consisting of n copies of x, and the cartesian product ×. We also showed that the Huet–Oppen
extension [19] of a partial order coincides with the Dershowitz–Manna extension as well as
with the transitive closure of the one-step Dershowitz–Manna extension, allowing users to
switch between the three characterizations. Remarkably, the characterizations do not coincide
for arbitrary orders. Each characterization has its advantages. For example, the Huet–Oppen
extension is unsuitable for defining the recursive path order [10, Section 2], whereas the
Dershowitz–Manna extension is unsuitable for defining the Knuth–Bendix order [5, Section 2].

I Example 1 (McCarthy’s 91 Function). Dershowitz and Manna [15] apply the multiset order
to prove the termination of a tail-recursive reformulation of McCarthy’s 91 function. Using
Isabelle’s definitional mechanism for recursive functions [23], the 91 function is specified as

function g : nat→ int→ int where
g n z = (if n = 0 then z else if z > 100 then g (n−1) (z−10) else g (n+1) (z+11))

To perform this definition, the command needs a well-founded relation R that includes g’s
call graph; otherwise, we could define a function f such that f n = f n + 1 and use this to
derive 0 = 1, a contradiction. The default automation [12, 24] is not powerful enough to
synthesize the relation, so we provide R ourselves. Following Dershowitz and Manna (but
correcting ‘< 111’ to ‘≤ 111’), we define the relation as

R =
{

((n, z), (n′, z′)). (τ n z, τ n′ z′) ∈ mult {(a, b). b < a ∧ a ≤ 111}
}

where τ is defined as follows, together with an auxiliary function f:

definition f : int→ int where f x = (if x > 100 then x− 10 else 91)
definition τ : nat→ int→ int multiset where τ n z = mset (map (λi. fi z) [0 . . n− 1])

The mset function in τ ’s definition converts a list to a multiset of its elements.
The main proof obligation is to show that g’s call graph is included in R—i.e., that the

arguments (n, z) become smaller with each recursive call according to the measure τ n z and
the multiset order. We followed the original proof, relying on existing lemmas about mult.
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The verified SAT solver framework [7] developed mainly by Fleury as part of the IsaFoL
(Isabelle Formalization of Logic) effort represents clauses as multisets of literals and problems
as multisets of clauses. To improve automation, we developed simplifier plugins, or “simprocs,”
that cancel terms that appear on both sides of a subtraction, equality, or inequality, rewriting
the expression A+ {x}+B = add x A to B = {} and A+ {x}+B − add x A to B. Since
multiset multiplicities are natural numbers, we started with the cancellation simprocs for nat,
due to Lawrence Paulson, and generalized them to arbitrary members of the type class of
cancellative commutative monoids—including nat, ′amultiset, and the hereditary and signed
multiset types introduced in Sections 5 and 7. The properties required by the type class are
0 + a = a, (a+ b) + c = a+ (b+ c), a+ b = b+ a, (a+ b)− a = b, and a− b− c = a− (b+ c).

The simprocs for nat depend on a ‘k ×’ operation. We first needed to define its multiset
counterpart, repeat : nat → ′a multiset → ′a multiset, and to prove lemmas about it. The
multiset instances of our simprocs collectively perform the following steps:

1. Normalize the goal by rewriting add a X to {a}+X and replicate n a to repeat n {a}.
2. Extract A and B from any occurrence of the pattern A ∼ B in the goal to normalize,

where ∼ is among −, =, <, ≤, ⊂, and ⊆.
3. Extract the summands in A = A1 + · · ·+Am and B = B1 + · · ·+Bn to form two lists of

multiplicity–term pairs.
4. Find common terms on both sides, subtract the coefficients, and remove the element in

the goal using an explicit lemma instantiation.
5. Recombine the simplified terms with ∼.
6. Normalize {a} back to add a {} and simplify add (e.g., replacing M + add a {}+N with

add a (M +N)).

In general, the normalization steps are parameterized by rewrite rules, which must be provided
for each type instance.

4 Nested Multisets

The type of nested multisets defined in Section 1 is freely generated by the constructors
Elem : ′a→ ′a nmultiset and MSet : (′a nmultiset)multiset→ ′a nmultiset. The characteristic
theorems derived by the datatype command [8] include the induction rule

(
∧
x. P (Elem x)) =�⇒ (

∧
NM . (

∧
N ∈NM . P N) =�⇒ P (MSet NM )) =�⇒ P N

In the MSet NM case, the induction hypothesis applies to all elements N of the multiset NM .

Strictly speaking, the condition is N ∈ set NM , where set is the natural transformation
associated with the functor multiset, but we overload the symbol ∈ for multisets. The
command also defines a recursor rec : (′a → ′b) → ((′a nmultiset × ′b) multiset → ′b) →
′a nmultiset→ ′b and derives its characteristic equations:

rec e ms (Elem x) = e x

rec e ms (MSet NM ) = ms (image (λN. (N, rec ems N)) NM )

Using the recursor, we can specify primitive recursive functions on nested multisets. A useful
example is the depth of a nested multiset, depth : ′a nmultiset→ nat, defined by

depth = rec (λx. 0) (λM. let X = set (image sndM) in if X = {} then 0 else Max X + 1)

where snd : ′a× ′b→ ′b is the second pair projection and Max returns the maximum element
of a nonempty finite set equipped with a linear order. Even for a simple example like this,

FSCD 2017
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the recursor-based definition is cryptic. Isabelle’s primrec command allows users to specify
primitive recursive functions by their equations, such as

depth (Elem x) = 0
depth (MSet M ) = (let X = set (image depthM) in if X = {} then 0 else Max X + 1)

Internally, primrec defines depth in terms of rec and derives the user’s equations from rec’s
characteristic equations.

The next function we consider is Dershowitz and Manna’s nested multiset order [15]. We
reproduce their definition below (partly adapting the notations):

For two nested multisets M,N over A, we say that M <<∗ N if
1. M,N ∈ A and M < N (two elements of the base set are compared using <); or else
2. M /∈ A and N ∈ A (any multiset is greater than any element of the base set); or else
3. M,N /∈ A, and for some nested multisets X,Y , where {} 6= Y ⊆ N ,

M = (N − Y ) ] X and ∀x ∈X. ∃y ∈ Y. x <<∗ y

The corresponding Isabelle definition is as follows (with < overloaded to also mean <<∗):

function < : ′a nmultiset→ ′a nmultiset→ bool where
Elem a < Elem b ←→ a < b

| Elem a < MSetM ←→ True
| MSetM < Elem a ←→ False
| MSetM < MSet N ←→ extDM (<) M N

There are several things to note here. First, we use function instead of primrec because
we are recursing on two nested multisets simultaneously. Second, extDM R A B is the
Dershowitz–Manna multiset order extension of R applied to multisets A,B. It is defined by

extDM R A B ←→ ∃X Y. Y 6= {} ∧ Y ⊆ B ∧ A = (B − Y ) +X ∧ ∀x ∈X. ∃y ∈ Y. R x y

Third, the function command expects a termination proof in the form of a well-founded
relation. We provide the well-founded lexicographic product sub ×lex sub of the immediate
subterm relations sub : (nmultiset × nmultiset) set defined as {(N, MSet NM ) | N ∈ NM}.
The termination proof crucially relies on the fact that extDM applies the relation passed as
its first argument only to nested multisets contained in its second and third arguments. This
is easy to prove for arbitrary relations for extDM but would be harder for mult. And since we
have not established the transitivity of the function we are defining yet, we cannot use the
equivalence of mult and extDM on partial orders. This explains the use extDM in the definition.
Fourth, after obtaining the termination proof, function generates an induction principle
that matches the recursion schema used in the definition.

Next, we prove several closure properties of the nested multiset order. If < : ′a→ ′a→ bool
is a (nonstrict) preorder, then < : ′a nmultiset→ ′a nmultiset→ bool yields a preorder. The
same closure property holds for partial orders, total orders, and wellorders (i.e., well-founded
total orders). Each closure property corresponds to a type class instantiation, and each type
class instantiation gives us a wealth of lemmas and helpful reasoning infrastructure about
the nested multiset order.

Only the proofs of transitivity and well-foundedness of the nested multiset order are
challenging. For transitivity, we rely on extDM’s equivalence to mult on transitive relations.
We prove transitivity by induction, and the induction hypothesis establishes that extDM is
only applied to a transitive relation. To prove well-foundedness, we start with an auxiliary
lemma: < is well-founded on the set of nested multisets of a fixed depth i. Formally:
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wf {(M, N) | depthM = i ∧ depth N = i ∧M < N}. The proof proceeds by induction on i
and uses the equivalence of extDM and mult (on transitive relations) as well as the proof of
preservation of well-foundedness by mult. Finally, we obtain the well-foundedness of the
entire relation by observing that depth M < depth N implies M < N and hence M < N

can be rewritten to depth M < depth N ∨ depth M = depth N ∧ M < N . In other words,
we lexicographically compare the depths and resort to the nested multiset order to break
ties. The claim follows, since with the above lemma both components of the lexicographic
comparison are well founded.

5 Hereditary Multisets

Many authors rely on nested multisets and the order on them in one way or another. However,
most of them do not use the Elem constructor, or use it in an easily avoidable way. In this
section, we consider nested multisets with no Elem constructor. In set theory, we could
simply let ′a be the empty set to model this. Since this is not possible in HOL, we define
Elem-freedom as an inductive predicate:

inductive no_elem : ′a nmultiset→ bool where
(
∧
N ∈NM . no_elem N) =�⇒ no_elem (MSet NM )

In principle, we could now use typedef to carve out a new type consisting of nested
multisets satisfying no_elem. However, the resulting type would be isomorphic to the datatype
of hereditary multisets as introduced in Section 1, with its single injective constructor HMSet :
hmultiset multiset→ hmultiset. We prefer the datatype definition, since it offers convenient
recursion and induction schemas. Nonetheless, the subtype view on hereditary multisets is
also useful, as it allows us to lift the infrastructure from nested to hereditary multisets.

Formally, we establish this view by providing an isomorphism, as two mutually inverse
injections Abs : unit nmultiset→ hmultiset and Rep : hmultiset→ unit nmultiset defined by
Abs (MSet M) = HMSet (image Abs M) and Rep (HMSet M) = MSet (image Rep M). The
isomorphism follows by easy inductions (on hmultiset or on the definition of no_elem):

lemma
∧
M : hmultiset. no_elem (Rep M)∧

M : hmultiset. Abs (Rep M) = M∧
N : unit nmultiset. no_elem N =�⇒ Rep (Abs N) = N

The Lifting tool [20] exploits these properties to lift constants on nested multisets to hereditary
multisets. Here is our definition of the hereditary multiset order:

lift_definition < : hmultiset→ hmultiset→ bool is
< : unit nmultiset→ unit nmultiset→ bool

The lift_definition command produces the definition M < N ←→ Rep M < Rep N, which
hides the isomorphism. Moreover, the command also provides a setup for the companion
Transfer tool [20], which reduces proof goals about the abstract type (hmultiset) to goals
about the raw type (unit nmultiset). Nevertheless, the proof of the expected property
HMSet M < HMSet N ←→ extDM (<) M N is not trivial, because we must ensure that the
witnesses for the existential quantifiers in the definition of extDM contain no Elem. With this
property in place, it is easy to lift the instantiations of the various order type classes (up to
and including wellorders) from nested to hereditary multisets.

Finally, we prove that hmultiset is a cancellative commutative monoid by lifting the
corresponding structure from the multiset type—i.e., by defining 0 = HMSet {}, HMSet A+
HMSet B = HMSet (A + B), and HMSet A − HMSet B = HMSet (A − B). This enables
natural-number-like reasoning with multisets, including our generalized cancellation simprocs.

FSCD 2017
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6 Syntactic Ordinals

Hereditary multisets are isomorphic to the ordinals below ε0, which we call the syntactic
ordinals. Instead of defining a new type, we use hmultiset whenever we need such ordinals and
provide the main ordinal operations on this type. Our notion of syntactic ordinal is similar to
Dershowitz and Moser’s “ordinal terms” [16], which they attribute to Takeuti [35, Section 2.11],
but unlike them we do not need to consider the ordinal 0 specially.

The empty hereditary multiset 0 corresponds to the ordinal 0. Union + corresponds
to Hessenberg addition, which is traditionally denoted by ⊕; we write + to exploit the
Isabelle type classes for addition. The multiset order < conveniently coincides with its
ordinal counterpart. Multiset subtraction also makes sense as a truncating subtraction on
ordinals; for example, 1− 3 = 0, ω − 3 = ω, and ω2 + 3− ω = ω2 + 3. Notice that if α < β,
then it is not necessarily the case that α − β = 0. To provide more complete support for
ordinals, we define some additional constants and abbreviations on hmultiset, starting with
the following basic concepts: ωα = HMSet {α}; 1 = ω0; ω = ω1. Given 1 and +, Isabelle lets
us enter arbitrary numerals and interprets them as 1 + · · ·+ 1.

The Hessenberg product is defined by taking the cartesian product of the operands’
multisets and applying addition on the resulting pairs to obtain a multiset of ordinals, i.e.,
an ordinal: α · β = HMSet (image (+) (hmsetmset α × hmsetmset β)), where hmsetmset is
HMSet’s inverse. The expected properties are easy to prove: Multiplication is associative,
commutative, and distributive over addition; 0 is absorbent; 1 is neutral; 0 6= 1; etc.

It is interesting to compare our definition of the Hessenberg product with the litera-
ture. The following definition, by Ludwig and Waldmann [26], illustrates how suboptimal
abstractions can lead to convoluted formulations:

For α ∈ O \ {0} we define: 0� 0 = 0 0� α = 0 α� 0 = 0
Let for m,m′ ∈ N>0, n1, . . . , nm, n′1, . . . , n′m′ ∈ N>0, b1, . . . , bm, b′1, . . . , b′m′ ∈ O
such that b1 > b2 > · · · > bm and b′1 > b′2 > · · · > b′m,

a =
∑m
i=1(ωbi · ni), b =

∑m′

i=1(ωb′
i · n′i)

We define then

α� β =
⊕m

i=1
⊕m′

j=1

(
ωbi⊕b′

j ·
(
coeff(α, bi) + coeff(β, b′j)

))
Subtraction is so ill behaved that multiplication does not distribute over it: For α = ω2+ω,

β = 1, and γ = ω, we have α · (β− γ) = ω2 +ω 6= ω = α ·β−α · γ. As a result, some Isabelle
type classes for subtraction cannot be instantiated for ordinals.

Given an ordinal
∑n
i=1(ωαi · ci) in Cantor normal form, its degree corresponds to the

largest exponent, α1. Unfortunately, this definition does not gracefully handle the case where
n = 0. We could extend the ordinal type with a special value (e.g., −∞), but this would
require a different type and operations on that type. Instead, we introduce the concept of a
head ω-factor. For 0, the head ω-factor is 0; for nonzero ordinals of degree α, it is ωα, which
is always nonzero. The degree is the maximum element in the multiset that corresponds to
the ordinal. Formally: headω α =

(
if α = 0 then 0 else ωMax (set (hmsetmset α))).

The following decomposition lemma, which was brought to our attention by Uwe Wald-
mann, is useful when comparing ordinals. Given two ordinals α1, α2 such that α1 < α2, we
can always express them as sums of the form αi = γ + βi, where the head ω-factor of β1 is
smaller than that of β2:

lemma hmset_pair_decompose_less:
α1 < α2 =�⇒ ∃γ β1 β2. α1 = γ + β1 ∧ α2 = γ + β2 ∧ headω β1 < headω β2
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I Example 2 (Hydra Battle). The hydra battle [22] is a classic process whose termina-
tion cannot be proved by induction on the natural numbers. Following Dershowitz and
Moser’s reformulation [16], we use Lisp-style lists (unlabeled binary trees) to represent hydras:
datatype lisp = Nil | Cons lisp lisp. The functions car and cdr are defined to extract the
first and second arguments of Cons, respectively; they return Nil when invoked on a Nil node.

A hydra consists of a list of heads. In a departure from standard Greek mythology, each
head is recursively a list of heads. The battle also involves a hero, Hercules, who gets to
chop off one of the hydra’s “leaf” heads at each round. If the head has no grandparent node,
the head is lost and there is no regrowth; otherwise, the branch issuing from the grandparent
node is copied n times, where n starts at 1 and is increased by 1 in each round. We refer
to the literature for more details (and some nice drawings of polycephalic monsters).

Formally, the battle is captured by the h function below, which depends on an auxiliary
function d:

function d : nat→ lisp→ lisp where
d n x = (if car x = Nil then cdr x

else if car (car x) = Nil then (Cons (cdr (car x)))n (cdr x)
else Cons (d n (car x)) (cdr x))

function h : nat→ lisp→ lisp where
h n x = (if x = Nil then Nil else h (n+ 1) (d n x))

For d, termination is easy: The left subtree of x becomes smaller with each iteration, so we
can take {((n′, x′), (n, x)). |x′| < |x|} as the relation, where |x| returns the number of nodes
of a list x. For h, instead of |x|, we use encode x as the measure, where encode is defined by
the primitive recursive equations encode Nil = 0 and encode (Cons l r) = ωencode l + encode r.

Thanks to well-foundedness of <, it suffices to show that the ordinal decreases in each
recursive call to h—i.e., if x 6= Nil, then encode (d n x) < encode x. The proof is by
structural induction on x. The Nil case is trivial. In the Cons l r case, if l = Nil, we have
0 < ω0 + encode r. Otherwise, we distinguish two subcases. If car l = Nil, we must prove
encode (f n (cdr l) r) < ωencode l + encode r, which amounts to n · ωencode (cdr l) + encode r <
ωω

encode (car l) + encode (cdr l) + encode r. The right-hand side is greater because the exponent to ω
has an additional nonzero term, ωencode (car l), which dwarfs the n factor on the left. In the re-
maining case, we have car l 6= Nil. The proof obligation amounts to encode (d n l) < encode l,
corresponding to the induction hypothesis for the left subtree.

The termination proof is about 30 lines long in Isabelle. As is often the case, the formal-
ization revealed some inaccuracies in the informal argument. Although this is not mentioned
by Dershowitz and Moser, the termination proof depends on car Nil = Nil. They also claim
that Cons Nil Nil represents a “leaf of a hydra,” but the car x = Nil test in d’s definition can
only mean that a simple Nil node is used for leaves.

I Example 3 (Ludwig and Waldmann). The following Isar proof outline closely follows the
pen-and-paper proof of a property Ludwig and Waldmann needed to reason about their
transfinite Knuth–Bendix order [26]. The informal proof was communicated to us privately by
Waldmann. A more restrictive formulation is claimed as Lemma 10 in their paper. The steps
are justified by short proofs, omitted below, most of which were generated by Sledgehammer.
Using Isabelle’s built-in automation and the cancellation simprocs, it would be possible to
eliminate some of the intermediate steps.

lemma
assumes α2 + β2 · γ < α1 + β1 · γ and β2 ≤ β1 and γ < δ

shows α2 + β2 · δ < α1 + β1 · δ
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proof
obtain η γ′ δ′ where γ = η + γ′ and δ = η + δ′ and headω γ′ < headω δ′
obtain β0 β

′
1 β
′
2 where β1 = β0 + β′1 and β2 = β0 + β′2 and

headω β′2 < headω β′1 ∨ β′2 = 0 ∧ β′1 = 0 {by hmset_pair_decompose_less}

have α2 + β0 · γ + β′2 · γ = α2 + β2 · γ {by β2 = β0 + β′2}
also have < α1 + β1 · γ {by α2 + β2 · γ < α1 + β1 · γ}
also have = α1 + β0 · γ + β′1 · γ {by β1 = β0 + β′1}
finally have α2 + β′2 · γ < α1 + β′1 · γ {by cancellation}

have α2 + β2 · δ = α2 + β0 · δ + β′2 · δ {by β2 = β0 + β′2}
also have = α2 + β0 · δ + β′2 · η + β′2 · δ′ {by δ = η + δ′}
also have ≤ α2 + β0 · δ + β′2 · η + β′2 · δ′ + β′2 · γ′ {by monotonicity}
also have = α2 + β′2 · γ + β0 · δ + β′2 · δ′ {by γ = η + γ′}
also have < α1 + β′1 · γ + β0 · δ + β′2 · δ′ {by α2 + β′2 · γ < α1 + β′1 · γ}
also have = α1 + β′1 · η + β′1 · γ′ + β0 · η + β0 · δ′ + β′2 · δ′ {by γ = η + γ′, δ = η + δ′}
also have ≤ α1 + β′1 · η + β0 · η + β0 · δ′ + β′1 · δ′

{by headω (β′1 · γ′ + β′2 · δ′)< headω (β′1 · δ′) ∨ β′1 · γ′ = β′2 · δ′ = β′1 · δ′ = 0}
finally show α2 + β2 · δ < α1 + β1 · δ {by β1 = β0 + β′1, δ = η + δ′}

qed

7 Signed Variants of Multisets and Hereditary Multisets

Syntactic ordinals do not enjoy the property that Ludwig and Waldmann refer to as “conti-
nuity” [26]: Given syntactic ordinals α, β such that α < β, there does not necessarily exist
an ordinal γ such that α+ γ = β. Yet, syntactic ordinals correspond formally to polynomials
over the indeterminate ω. Why not allow negative coefficients (e.g., ω2 − 2ω + 1) and take
γ = β−α? The practical motivation arose in the context of the formalization of a transfinite
Knuth–Bendix order [4,5]. Although it is a simple idea, we could not find it in the literature.

We start by defining the signed multisets, also called the hybrid multisets [2]. In principle,
we could define them in a similar way as the plain multisets (Section 3), by substituting int
for nat in the typedef command. However, we prefer to perform a quotient construction, so
as to be able to lift operations and lemmas about plain multisets:

quotient_type ′a zmultiset = ′a multiset× ′a multiset / R

where R = λ(P1, N1) (P2, N2). P1 + N2 = P2 + N1. The quotient_type command [21]
introduces a type that is isomorphic to the set of R-equivalence classes. In the same way as
a pair (m,n) of natural numbers can represent the integer m− n, we use a pair (P,N) of
plain multisets to capture the signed multiset P −N, whose multiplicities can be negative.
For example, both ({}, {7}) and ({3}, {3, 7}) correspond to the signed multiset that contains
7 with multiplicity −1 and no other element. Notice that R ({}, {7}) ({3}, {3, 7}), since
{}+ {3, 7} = {7}+ {3}. The pos and neg functions, of type ′a zmultiset→ ′a multiset, return
normalized P and N components, with P ∩ N = {}.

The main signed multiset operations are defined by specifying them on the raw level of
multiset pairs and lifting them to the abstract level of equivalence classes. The Lifting tool
emits a proof obligation stating that equivalence classes are respected. For example, for
unary functions f on multisets, this means that when f is invoked on R-equivalent arguments
x and y, the results f x and f y are R-equivalent. A few definitions are given below:

lift_definition 0 : ′a zmultiset is ({}, {})
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lift_definition − : ′a zmultiset→ ′a zmultiset→ ′a zmultiset is
λ(P1, N1) (P2, N2). (P1 +N2, N1 + P2)

lift_definition zcount : ′a zmultiset→ ′a→ int is
λ(P,N) x. int (count P x)− int (count N x)

Many lemmas about such definitions can be lifted from the raw types using the Transfer
tool, which exploits relational parametricity [31] to transfer results across types. Most HOL
functions arising in practice are parametric.

The type zhmultiset of signed hereditary multisets is defined using the typedef command
as isomorphic to hmultiset zmultiset. Notice that the multisets contained in such a signed
multiset are not signed. It is unclear to us whether “hereditarily signed” multisets, and
“ordinals” in which the exponents of ω can recursively contain negative coefficients, would be
worth studying.

The ι function embeds hmultiset into zhmultiset. Operations such as +, −, and < are
lifted from the underlying multisets. Ordinal multiplication is by far the most problematic
operation. It can be defined in terms of the cartesian product on signed multisets:

lift_definition · : zhmultiset→ zhmultiset→ zhmultiset is
λM N : hmultiset zmultiset.

ι (hmsetmset (HMSet (pos M) · HMSet (pos N)))
− ι (hmsetmset (HMSet (pos M) · HMSet (neg N)))
+ ι (hmsetmset (HMSet (negM) · HMSet (neg N)))
− ι (hmsetmset (HMSet (negM) · HMSet (pos N)))

It is difficult to prove the associativity of this multiplication operator. Using the Transfer tool,
we can quickly reduce the proof obligation to the following property of unsigned ordinals:

α2 · (β2 · γ2 + β1 · γ1 − (β2 · γ1 + γ2 · β1)) + γ2 · (α2 · β1 + β2 · α1 − (α2 · β2 + α1 · β1 )) +
α1 · (β2 · γ1 + γ2 · β1 − (β2 · γ2 + β1 · γ1)) + γ1 · (α2 · β2 + α1 · β1 − (α2 · β1 + β2 · α1))

= α2 · (β2 · γ1 + γ2 · β1 − (β2 · γ2 + β1 · γ1)) + γ2 · (α2 · β2 + α1 · β1 − (α2 · β1 + β2 · α1)) +
α1 · (β2 · γ2 + β1 · γ1 − (β2 · γ1 + γ2 · β1)) + γ1 · (α2 · β1 + β2 · α1 − (α2 · β2 + α1 · β1 ))

After staring at this goal for a few hours, we speculated that the property α · (γ−β) +α ·β =
α · (β − γ) + α · γ holds about truncating subtraction. We proved it and applied it four
times to make the left-hand side of the proof obligation above syntactically identical to the
right-hand side.

Here is a selection of the properties we proved using Isabelle, with α, β, γ ranging over
signed ordinals:

1. α+ β = β + α;
2. (α+ β) + γ = α+ (β + γ);
3. α · β = β · α;
4. (α · β) · γ = α · (β · γ);
5. (α+ β) · γ = α · γ + β · γ;
6. α < β ←→ α+ γ < β + γ;
7. 0 + α = α;
8. 0 · α = 0;

9. 1 · α = α;
10. α ≤ β ←→ α < β + 1;
11. α · β = 0←→ α = 0 ∨ β = 0;
12. α < β ∧ 0 < γ =�⇒ γ · α < γ · β;
13. α− β + β = α;
14. α− β + γ = α+ γ − β;
15. α+ β − γ = α+ (β − γ);
16. α− β − γ = α− (β + γ).

Finally, we instantiated our generalized cancellation simprocs for zmultiset and zhmultiset.
As preprocessing steps, we normalize unary minuses, rewriting −α+ β + α to (β + α)− α;
the subtraction simproc then cancels the two α’s, yielding β.
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I Example 4 (Ludwig and Waldmann, Continued). By exploiting signed ordinals, we obtain a
much simpler proof of Ludwig and Waldmann’s property from Example 3:

have ι α2 + ι β2 · ι δ = ι α2 + ι β2 · ι γ + ι β2 · (ι δ − ι γ) {by algebraic manipulations}
also have < ια1 + ι β1 · ι γ + ι β2 · (ι δ − ι γ) {by α2 + β2 · γ < α1 + β1 · γ}
also have ≤ ι α1 + ι β1 · ι γ + ι β1 · (ι δ − ι γ) {by β2 ≤ β1, γ < δ}
also have = ι α1 + ι β1 · ι δ {by algebraic manipulations}
finally show α2 + β2 · δ < α1 + β1 · δ {by algebraic manipulations}

The next-to-last step eliminates the subtraction ι δ − ι γ, paving the way for the final step,
which removes the ι casts. Waldmann privately confirmed that he was aware of this shortcut
but did not dare take it without a solid theoretical foundation for signed ordinals.

8 Application to Goodstein’s Theorem

Goodstein’s theorem [17] states that every Goodstein sequence eventually terminates at 0.
Before we can define these sequences, we must first introduce an auxiliary notion. A natural
number is in hereditary base n if it is expressed as a product c1n

k + c2n
k−1 + · · ·+ ck−1n+ ck,

where 0 ≤ ci < n for each i, c1 6= 0, and the exponents k, k−1, . . . , 1 are recursively expressed
in hereditary base n. For example, 500 is written as 2 · 33+2 + 32 + 3 + 2 in hereditary base 3.

The Goodstein sequence Gs of natural numbers is defined as follows. The starting value
is given by s: Gs(0) = s. The remaining values Gs(i+ 1) are obtained by expressing Gs(i) in
base i+ 2, replacing all occurrences of i+ 2 by i+ 3, and subtracting 1. For example, we have
G4(0) = 4 = 22, G4(1) = 33 − 1 = 26 = 2 · 32 + 2 · 3 + 2, and G4(2) = 2 · 42 + 2 · 4 + 2− 1 = 41.
Somewhat counterintuitively, the sequence eventually converges to 0: G4(3·2402 653 211−1) = 0.

Our formal proof relies on two functions encode and decode that convert between natural
numbers and hereditary base n. The adjective ‘hereditary’ suggests that hereditary multisets,
or syntactic ordinals, are a suitable data structure. Following this idea, 2 · ω2 + 2 · ω + 2
represents 2 · 32 + 2 · 3 + 2 in hereditary base 3, or 2 · 52 + 2 · 5 + 2 in hereditary base 5.

The encode and decode functions are defined in a local context that fixes a constant
base ≥ 2. Beyond the end of the local context, we must supply the base explicitly as
additional argument to encode and decode, which we will indicate as a subscript.

context
fixes base : nat
assumes base ≥ 2

begin

function encode : nat→ nat→ hmultiset where
encode e n = (if n = 0 then 0 else (n mod base) · ωencode 0 e + encode (e+ 1) (n/base))

primrec decode : nat→ hmultiset→ nat where
decode e (HMSetM) =

(∑
α∈M basedecode 0 α)/basee

end

The argument e gives the exponent of the current base, starting from 0. The recursion scheme
for encode is nonprimitive. Termination is established using the measure λ(e, n). n·(basee+1).
The Goodstein sequence is defined as follows, where start is fixed:

primrec goodstein : nat→ nat where
goodstein 0 = start
| goodstein (i+ 1) = decodei+3 0 (encodei+2 0 (goodstein i))− 1
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If goodstein i > 0, then the ordinal associated with goodstein (i+ 1) is smaller than the
one for goodstein i. Let Ei = encodei+2 0 (goodstein i). The proof sketch is as follows:

lemma goodstein_step:
assumes goodstein i > 0
shows Ei > Ei+1

proof
have decodei+3 0 Ei > 0 {by decode_0_iff }
have Ei = encodei+3 0 (decodei+3 0 Ei) {by encode_decode_exp_0}
also have > encodei+3 0 (decodei+3 0 Ei − 1)

{by less_imp_encode_less, decodei+3 0 Ei > 0}
finally show Ei > Ei+1 {by definition of Ei+1}

qed

The main lemmas that are directly or indirectly needed are listed below:

lemma less_imp_encode_less: n < p =�⇒ encode e n < encode e p
lemma less_imp_decode_less:

well_base α =�⇒ aligned e α =�⇒ aligned e β =�⇒ α < β =�⇒ decode e α < decode e β
lemma decode_0_iff : well_base α =�⇒ aligned e α =�⇒ (decode e α = 0←→ α = 0)
lemma decode_encode: decode e (encode e n) = n

lemma encode_decode_exp_0 : well_base α =�⇒ encode 0 (decode 0 α) = α

The first and second properties are the most difficult ones. The first one is proved by
well-founded induction, following the recursion structure of encode. This induction principle
is derived automatically by the function command. The second property is proved by strong
induction on α. The assumptions ensure that the coefficients stored in α are smaller than
the base (well_base) and that the last e digits are all 0s (aligned).

The entire formalization is about 580 lines long. The main difficulty was to come up
with the right lemmas and inductions. Reasoning about ordinals was fairly comfortable.
Nevertheless, we are very impressed by Zankl, Winkler, and Middeldorp’s automatic proof of
the termination of a term rewriting system that computes Goodstein’s sequence [40]. Possibly
the key to their success is that they avoid converting back and forth between the natural
numbers and hereditary base notation.

9 Application to Decidability of Unary PCF

Plotkin’s PCF language of “programming computable functions” [30] is a simply typed
λ-calculus that has natural numbers N as a base type and permits recursion on them. Types
are interpreted as Scott domains, i.e., JNK = N ∪ {⊥}. For unary PCF, a fragment of PCF
which has only the base type o with the single value > (in addition to the domain’s ⊥),
behavioral equivalence is decidable [25,32]. Schmidt-Schauß’s elegant proof [32] is based on
an inductive enumeration of representative terms. The termination of the enumeration is
ensured by abstracting types into hereditary multisets. In our ongoing formalization effort
of this decidability result (which poses many challenges unrelated to multisets), we proved
Schmidt-Schauß’s key Lemma 11 about hereditary multisets.

Types of unary PCF are defined as datatype type = o | type⇒ type, where ⇒ is a right-
associative infix datatype constructor. Given a type T , we define its argument types Ti and
its arity ar T such that T = T0 ⇒ · · · ⇒ Tar T − 1 ⇒ o. We measure a type using a primitive
recursive function δ : type → hmultiset defined by δ o = 0 and δ (T ⇒ U) = ωδ T + δ U .
For a type T , Schmidt-Schauß constructs a set of representative closed terms of behavioral
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equivalence classes. The construction is recursive and relies on a decrease in the involved types’
measures for termination. More precisely, given T , the construction recursively computes sets
of representative terms for types πji T for all i < ar T and j ≤ ar Ti, where the operator π is
defined recursively as follows:

fun π : nat→ nat→ type→ type where
π0
i T = (if i < ar T then T0 ⇒ · · · ⇒ Ti−1 ⇒ Ti+1 ⇒ · · · ⇒ Tar T−1 ⇒ o else o)

| πj+1
i T = (if i < ar T ∧ j < ar Ti then π0

j Ti ⇒ · · · ⇒ π
ar (Ti)j

j Ti ⇒ π0
i T else o)

Finally, we prove that π indeed decreases the measure of types using the induction principle
that follows the structure of π’s definition and is provided by Isabelle’s fun command [23].

lemma δ_π:
assumes i < ar T and j ≤ ar Ti
shows δ (πji T ) < δ T

proof (induct rule: π.induct)
fix T i

assume i < ar T
show δ (π0

i T ) < δ T {by definition of δ and π and simple multiset reasoning}
next
fix T i j

assume i < ar T and j < ar Ti and
IH 1: δ (π0

j Ti) < δ Ti and IH 2: ∀k < ar (Ti)j . δ (πk+1
j Ti) < δ Ti

define X = {δ (π0
j Ti)}+ image (λk. δ (πk+1

j Ti)) {0, . . . , ar (Ti)j − 1} and
Y = {δ Ti} and Z = image δ {T0, . . . , Ti−1, Ti+1, . . . , Tar T − 1}

have δ (πj+1
i T ) = HMSet (X + Z) {by definitions of δ and π}

also have X + Z < Y + Z {by Dershowitz–Manna characterization of <, IH 1, IH 2}
also have HMSet (Y + Z) = δ T {by definition of δ}
finally show δ (πj+1

i T ) < δ T {by above calculation}
qed

The key step to help automation is to define X, Y, and Z (all of type hmultiset multiset) such
that after unfolding the Dershowitz–Manna definition of the multiset order, the inequality is
easily fulfilled (given the induction hypotheses).

Our formal proof is very close to Schmidt-Schauß’s informal argument. It is rare to be
able to formalize a technical proof so closely. This can be due to the care taken by the
informal proof writer, due to good formal library support, or due to a combination of both.

10 Related Work

The nonnested multiset order has been formalized in several proof assistants, including
Coq [11,14], HOL4, and Isabelle/HOL [36]. The Isabelle version is generalized to take two
parameters: a strict and a nonstrict order. The resulting order is strictly more powerful for
termination proving than the standard version. Another aspect where the related work goes
further than our work is executability. In principle, little stands in the way of a decent code
generation setup for our multiset variants, following the lines of the existing multiset setup.

Norrish and Huffman [28] present two formalizations of ordinals, in HOL4 and Isabelle/
HOL. The HOL4 formalization models ordinals as quotients of wellorders with respect to
wellorder isomorphism. The Isabelle/HOL development also relies on a quotient construction,
but from a more syntactic notion of raw ordinals, defined as datatype preordinal = Zero |
StrictLim (nat→ preordinal). Independently, Blanchette, Popescu, and Traytel [9] formalized
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ordinals and cardinals in Isabelle/HOL, representing ordinals by well-ordered relations
dispersed over arbitrary types. Thereby they avoided fixing an a priori bound on the ordinals
that can be constructed. All these formalizations go beyond ε0 but are ultimately limited by
the expressiveness of HOL, which is strictly weaker than set theory. Another difference with
our current work is that they provide the standard addition and product and not Hessenberg’s.

In Coq, Castéran and Contejean [13] formalized ordinal notations up to Γ0. As case
studies, they considered the hydra battle and Goodstein’s theorem. Grimm [18] ported and
extended this work, covering three alternative notions of ordinals. Also in Coq, Vermaat [38]
formalized tree ordinals, a syntactic representation similar to Norrish and Huffman’s. Recently,
Schmitt [33] axiomatized ordinals in KeY and proved Goodstein’s theorem.

11 Conclusion

We presented a formalization in Isabelle/HOL of nested multisets, hereditary multisets,
and ordinals below ε0. Their datatype definitions emphasize the close connections between
the three notions. The signed generalizations of these types, with potentially negative
multiplicities, offer a subtraction operator that enjoys nice algebraic properties. The signed
syntactic ordinals do not appear to have been studied before.

The Lifting and Transfer tools were invaluable for carrying definitions across different
multiset types. We relied heavily on Sledgehammer; it sometimes generated complex Isar
proofs, which we occasionally inserted in our development. The cancellation simprocs also
played a role, after we had adapted them so that they work on multisets. Well-founded recur-
sion using function was vital, as it often is. But perhaps the most noteworthy aspect of our
work is that all the necessary types could be introduced easily, either as inductive datatypes,
as subsets of existing types, or as quotients. The support for recursion through bounded
natural functors, a distinguishing feature of Isabelle/HOL, was crucial to define nested and
hereditary multisets in a simple way, with convenient induction and recursion schemas.
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