
Superposition for Lambda-Free Higher-Order Logic
(Technical Report)

Alexander Bentkamp1(�), Jasmin Christian Blanchette1,2,3,
Simon Cruanes4,3, and Uwe Waldmann2

1 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
a.bentkamp@vu.nl

2 Max-Planck-Institut für Informatik, Saarland Informatics Campus, Saarbrücken, Germany
3 Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

4 Aesthetic Integration, Austin, Texas, USA

Abstract. We introduce refutationally complete superposition calculi for inten-
tional and extensional λ-free higher-order logic, two formalisms that allow partial
application and applied variables. The calculi are parameterized by a term order
that need not be fully monotonic, making it possible to employ the λ-free higher-
order lexicographic path and Knuth–Bendix orders. We implemented the calculi
in the Zipperposition prover and evaluated them on TPTP benchmarks. They ap-
pear promising as a stepping stone towards complete, efficient automatic theorem
provers for full higher-order logic.

1 Introduction

Superposition [3] is a highly successful calculus for reasoning about first-order logic
with equality. We are interested in graceful generalizations to higher-order logic: calculi
that, as much as possible, coincide with standard superposition on first-order problems
and that scale up to arbitrary higher-order problems.

As a stepping stone towards full higher-order logic, in this report we restrict our
attention to a λ-free fragment of higher-order logic that supports partial application and
application of variables (Section 2). This formalism is expressive enough to permit the
axiomatization of higher-order combinators such as powτ : nat → (τ→ τ)→ τ→ τ
(intended to denote the iterated application hn x):

pow 0 h≈ id pow (S n) h x≈ h (pow n h x)

Conventionally, functions are applied without parentheses and commas, and variables
are italicized. Notice the variable number of arguments to pow and the application of h.
The expressiveness of full higher-order logic can be recovered by introducing SK-style
combinators to represent λ-abstractions and proxies for the logical symbols [34, 47].

A widespread technique to support partial application and application of variables
in first-order logic is to make all symbols nullary and to represent application of func-
tions of type τ→ υ by a family of binary symbols appτ,υ. Following this scheme, the
higher-order term f (h f) is translated to app(f,app(h, f)), which can be processed by
first-order methods. We call this the applicative encoding. The existence of such a re-
duction explains why λ-free higher-order terms are also called “applicative first-order

terms.” Unlike for full higher-order logic, most general unifiers are unique for our λ-free
fragment, just as they are for applicatively encoded first-order terms.

Although the applicative encoding is complete [34] and is employed fruitfully in
tools such as Sledgehammer [11, 39], it suffers from a number of weaknesses, all re-
lated to its gracelessness. Transforming all the function symbols into constants consid-
erably restricts what can be achieved with term orders; for example, argument tuples
cannot be compared using different methods for different symbols [35, Section 2.3.1].
In a prover, the encoding also clutters the data structures, slows down the algorithms,
and neutralizes the heuristics that look at the terms’ root symbols. But our chief ob-
jection is the sheer clumsiness of encodings and their poor integration with interpreted
symbols. And they quickly accumulate; for example, using the traditional encoding of
polymorphism relying on a distinguished binary function symbol t [10, Section 3.3] in
conjunction with the applicative encoding, the term S x becomes t(nat,app(t(fun(nat,
nat),S), t(nat,x))). The term’s simple structure is lost in translation.

Hybrid schemes have been proposed to strengthen the applicative encoding: If a
given symbol always occurs with at least k arguments, these can be passed directly [39].
However, this relies on a closed-world assumption: that all terms that will ever be com-
pared arise in the input problem. This noncompositionality conflicts with the need for
complete higher-order calculi to synthesize arbitrary terms during proof search [7]. As
a result, hybrid encodings are not an ideal basis for higher-order automated reasoning.
Instead, we propose to generalize the superposition calculus to intensional and exten-
sional λ-free higher-order logic. In the extensional version of the logic, the property
(∀x. h x≈ k x)−�→ h≈ k holds for all functions h,k of the same type. For each logic, we
present two calculi (Section 3). The intentional calculi perfectly coincide with standard
superposition on first-order clauses; the extensional calculi depend on an extra axiom.

Superposition is parameterized by a term order, which prunes the search space. If we
assume that the term order is a simplification order enjoying totality on ground terms,
the standard calculus rules and completeness proof can be lifted verbatim. The only
necessary changes concern the basic definitions of terms and substitutions. However,
there is one monotonicity property that is hard to obtain unconditionally: compatibility
with arguments. It states that s′ � s implies s′ t � s t for all terms s, s′, t such that s t
and s′ t are well typed. We recently introduced graceful generalizations of the lexico-
graphic path order (LPO) [13] and the Knuth–Bendix order (KBO) [5] with argument
coefficients, but they both lack this property. For example, given a KBO with g � f, it
may well be that g a≺ f a if f has a large enough multiplier on its argument.

Our superposition calculi are designed to be refutationally complete for such non-
monotonic orders (Section 4). To achieve this, they include an inference rule for argu-
ment congruence, which derives C∨ s x≈ t x from C∨ s≈ t. The redundancy criterion is
defined in such a way that the larger, derived clause is not subsumed by the premise. In
the completeness proof, the most difficult case is the one that normally excludes super-
position at or below variables using the induction hypothesis. With nonmonotonicity,
this approach no longer works, and we propose two alternatives: Perform some super-
position inferences onto higher-order variables, or “purify” the clauses to circumvent
the issue. We refer to the corresponding calculi as nonpurifying and purifying.

The calculi are implemented in the Zipperposition prover [21] (Section 5). We eval-
uate them on first- and higher-order TPTP benchmarks [55,56] and compare them with

2

the applicative encoding (Section 6). We find that there is a substantial cost associated
with the applicative encoding, that the nonmonotonicity is not particularly expensive,
and that the nonpurifying calculi outperform the purifying variants.

2 Logic

Refutational completeness of calculi for higher-order logic (also called simple type the-
ory) [19, 28] is usually stated with respect to Henkin semantics [7, 30], in which the
universes used to interpret functions need only contain the functions that can be ex-
pressed as terms. Since the terms of λ-free higher-order logic exclude λ-abstractions,
in “λ-free Henkin semantics” the universes interpreting functions can be even smaller.
In that sense, our semantics resemble Henkin prestructures [37, Section 5.4]. Unlike
other higher-order logics [26], there are no comprehension principles, and we disallow
nesting of Boolean formulas inside terms, as a convenient intermediate step on our way
towards full higher-order logic.

Problematically, in a logic with applied variables but without Hilbert choice, sko-
lemization is unsound, unless we make sure that Skolem symbols are suitably applied
[40]. We achieve this using a hybrid logic that supports both mandatory (uncurried)
and optional (curried) arguments, inspired by higher-order term rewriting [35]. Thus, if
symbol sk takes two mandatory and one optional arguments, sk(x,y) and sk(x,y) z are
valid terms, whereas sk and sk(x) are invalid. Nevertheless, as in our earlier work [5,13],
we use the adjective “graceful” in the strong sense that we can exploit optional argu-
ments, identifying the first-order term f(x,y) with the curried higher-order term f x y.

A type τ,υ of λ-free higher-order logic is either an element ι of a fixed set of atomic
types or a function type τ→ υ of functions from type τ to type υ. In our hybrid logic, a
type declaration for a symbol is an expression of the form τ̄n⇒ τ (or simply τ if n = 0).
Here and elsewhere, we write ān or ā to abbreviate the tuple (a1, . . . ,an) or product
a1×·· ·×an, for n≥ 0.

We fix a set V of typed variables, denoted by x : τ or x. A signature consists of a
nonempty set Σ of symbols with type declarations, written as f : τ̄⇒ τ or f. We reserve
the letters s, t,u,v,w for terms and x,y,z for variables and write : τ to indicate their type.
The set of λ-free higher-order terms T X

Σ
over X is defined inductively as follows. Every

variable in X ⊆V is a term. If f : τ̄n⇒ τ and ui : τi for all i ∈ {1, . . . ,n}, then f(ūn) : τ is
a term. If t : τ→ υ and u : τ, then t u : υ is a term, called an application. Non-application
terms ζ are called heads. Using the spine notation [18], terms can be decomposed in a
unique way as a head ζ applied to zero or more arguments: ζ s1 . . . sn or ζ s̄n (abusing
notation). Substitution and unification are generalized in the obvious way, without the
complexities associated with λ-abstractions; for example, the most general unifier of
x b z and f a y c is {x 7→ f a, y 7→ b, z 7→ c}, and that of h (f a) and f (h a) is {h 7→ f}.

Formulas ϕ,ψ are of the form ⊥, >, ¬ϕ, ϕ∨ψ, ϕ∧ψ, ϕ −�→ ψ, t ≈τ s, ∀x. ϕ, or
∃x. ϕ, where t, s are terms and x is a variable. We let s 6≈ t abbreviate ¬ s ≈ t. We
normally view equations s≈ t as unordered pairs and clauses as finite multisets of such
(dis)equations.

Loosely following Fitting [27], an interpretation J = (U,E ,J) consists of a type-
indexed family of nonempty sets Uτ, called universes; a family of functions Eτ,υ :

3

Uτ→υ→ (Uτ→ Uυ), one for each pair of types τ,υ; and a function J that maps each
symbol with type declaration τ̄n⇒ τ to an element of Uτn →Uτ. An interpretation is
extensional if Eτ,υ is injective for all τ,υ. Both intensional and extensional logics are
widely used for interactive theorem proving; for example, Coq’s calculus of inductive
constructions is intensional [9], whereas Isabelle/HOL is extensional [43]. The seman-
tics is standard if Eτ,υ is bijective. A valuation ξ is a function that maps variables x : τ
to elements of Uτ.

For an interpretation (U,E ,J) and a valuation ξ, the denotation of a term is defined
as follows: JxKξJ = ξ(x); Jf(t̄)KξJ = J (f)(Jt̄KξJ); Js tKξJ = E(JsKξJ)(JtKξJ). The truth value
JϕKξJ ∈ {0,1} of a formula ϕ is defined as in first-order logic:

J∀(x : τ) ψKξJ = min
a∈Uτ

{JψKξ[x 7→a]
J } J∃(x : τ) ψKξJ = max

a∈Uτ

{JψKξ[x 7→a]
J }

A formula ϕ is true in J = (U,E ,J) under valuation ξ and we write J , ξ |= ϕ if
JϕKξJ = 1. The interpretation J is a model of ϕ, written J |= ϕ, if J , ξ |= ϕ for all valua-
tions ξ into {Uτ}τ.

For example, given the signature Σ = {a : ι}, the formula ∀(h : ι→ ι). h a 6≈ a has an
extensional model given by Uι = {a,b}, Uι→ι = { f}, Eι,ι(f)(a) = Eι,ι(f)(b) = b, and
J (a) = a, where a 6= b.

3 The Inference Systems

We introduce four versions of the superposition calculus, varying along two axes: in-
tentional versus extensional, and nonpurifying versus purifying. To avoid repetitions,
our presentation unifies them into a single framework.

3.1 The Inference Rules

The calculi are parameterized by a partial order� on terms that is well founded, total on
ground terms, and stable under substitutions and that has the subterm property. It must
also be compatible with function contexts, meaning that t′ � t implies both f(s̄, t′, ū) v̄�
f(s̄, t, ū) v̄ and s t′ ū � s t ū. On the other hand, it need not be compatible with optional
arguments: s′ � s need not imply s′ t� s t. Function contexts are built around argument
subterms, defined as the reflexive transitive closure of the “has argument” relation in-
ductively specified by f(s̄) t̄ � si and ζ t̄ � ti for all i. We write s〈u〉 to indicate that the
subterm u of s[u] is an argument subterm or, equivalently, that s[] is a function context.
For example, f and f a are subterms of f a b, but not argument subterms. The literal and
clause orders are defined from the term order as multiset extensions in the usual way.

Literal selection is supported. The selection function maps each clause C to a sub-
clause of C consisting of negative literals. A literal L is (strictly) eligible in C if it is
selected in C or there are no selected literals in C and L is (strictly) maximal in C.

We start with the extensional nonpurifying calculus, which consists of the five
rules and the extensionality axiom given on page 5. We view positive and negative
superposition as two cases of one rule called SUP. We have two rules and one axiom in
addition to the standard first-order rules and their usual order conditions.

4

Positive superposition:
D︷ ︸︸ ︷

D′∨ t ≈ t′
C︷ ︸︸ ︷

C′∨ s〈u〉 ≈ s′
SUP

(D′∨C′∨ s〈t′〉 ≈ s′)σ

• σ= mgu(t,u)
• tσ 6� t′σ and s〈u〉σ 6� s′σ
• (t ≈ t′)σ is strictly eligible in Dσ
• (s〈u〉 ≈ s′)σ is strictly eligible in Cσ
• Cσ 6� Dσ
• the variable conditions holds

Negative superposition:
D︷ ︸︸ ︷

D′∨ t ≈ t′
C︷ ︸︸ ︷

C′∨ s〈u〉 6≈ s′
SUP

(D′∨C′∨ s〈t′〉 6≈ s′)σ

• σ= mgu(t,u)
• tσ 6� t′σ and s〈u〉σ 6� s′σ
• (t ≈ t′)σ is strictly eligible in Dσ
• (s〈u〉 6≈ s′)σ is eligible in Cσ
• Cσ 6� Dσ
• the variable condition holds

Equality resolution:

C′∨ s 6≈ s′
EQRES

C′σ

• σ= mgu(s, s′)
• (s 6≈ s′)σ is eligible in the premise

Equality factoring:

C′∨ s′ ≈ t′∨ s≈ t
EQFACT

(C′∨ t 6≈ t′∨ s≈ t′)σ

• σ= mgu(s, s′)
• s′σ 6� t′σ and sσ 6� tσ
• (s≈ t)σ is eligible in the premise

Argument congruence:

C′∨ s≈ s′
ARGCONG

C′∨ s x̄≈ s′ x̄

• x̄ contains fresh variables
• s≈ s′ is strictly eligible in the premise

Positive extensionality:

C′∨ s x̄≈ s′ x̄
POSEXT

C′∨ s≈ s′

• x̄ is a tuple of variables that occur
nowhere else in the premise
• s x̄≈ s′ x̄ is strictly eligible in the

premise

Extensionality axiom: For every function type τ→ υ, we introduce a Skolem sym-
bol diffτ,υ : (τ→ υ)2⇒ τ characterized by the axiom

x (diff(x,y)) 6≈ y (diff(x,y)) ∨ x≈ y

5

Definition 1. A term of the form x s̄n, for n≥ 0, jells with a literal t≈ t′ ∈ D if t = t̃ ȳn
and t′ = t̃ ′ ȳn for some terms t̃, t̃ ′ and distinct variables ȳn that do not occur elsewhere
in D.

We add the following variable condition as a side condition to the SUP rules, to further
prune the search space, using the naming convention from Definition 1 for t̃ ′:

If u has a variable head x and jells with the literal t ≈ t′ ∈ D, there must exist a
ground substitution θ with tσθ� t′σθ and Cσθ≺C′′σθ, where C′′ =C[x 7→ t̃ ′].

This condition generalizes the standard condition that u /∈ V . The two coincide if C is
first-order. In some cases involving nonmonotonicity, the variable condition effectively
mandates SUP inferences at variable positions, but never below.

The second calculus is the intensional nonpurifying variant. We obtain it by re-
moving the POSEXT rule and the extensionality axiom and by replacing the variable
condition with “if u ∈ V , there exists a ground substitution θ with tσθ � t′σθ and
Cσθ ≺C[u 7→ t′]σθ.” For monotone term orders, this condition amounts to u /∈ V .

By contrast, the purifying calculi never perform superposition at variables. Instead,
they rely on purification [16, 23, 48, 51] (also called abstraction) to circumvent non-
monotonicity. The idea is to rename apart problematic occurrences of a variable x in a
clause to x1, . . . , xn and to add purification literals x1 6≈ x, . . . , xn 6≈ x to connect the new
variables. We must then ensure that all clauses are purified, by processing the initial
clause set and the conclusion of every inference or simplification.

In the extensional purifying calculus, the purification pure(C) of clause C is de-
fined as the result of the following iterative procedure. Consider the literals of C ex-
cluding those of the form y 6≈ z. If these literals contain both x ū and x v̄ as distinct
argument subterms, replace all argument subterms x v̄ with xi v̄, where xi is fresh, and
add the purification literal xi 6≈ x. For example, pure(x a ≈ x b∨ f x ≈ g x) = (x a ≈
x1 b∨ f x2 ≈ g x2 ∨ x1 6≈ x∨ x2 6≈ x). This calculus variant contains the POSEXT rule
and the extensionality axiom. The conclusion E of each rule is changed to pure(E), ex-
cept for POSEXT, which preserves purity. Moreover, the variable condition is replaced
by “either u has a non-variable head or u does not jell with the literal t ≈ t′ ∈ D.”

In the intensional purifying calculus, we define pure(C) iteratively as follows.
Consider the literals of C excluding those of the form y 6≈ z. If these literals contain
a variable x both applied and unapplied, replace all unapplied occurrences of x in C
by a fresh variable xi and add the purification literal xi 6≈ x. For example, pure(x a ≈
x b∨ f x≈ g x) = (x a≈ x b∨ f x1 ≈ g x1∨ x 6≈ x1). We remove the POSEXT rule and
the extensionality axiom. The variable condition is replaced by “u /∈V .” The conclusion
C of ARGCONG is changed to pure(C); the other rules preserve purity.

Finally, we impose some additional restrictions on literal selection. In the nonpu-
rifying variants, a literal may not be selected if x ū is a maximal term of the clause
and the literal contains an argument subterm x v̄ with v̄ 6= ū. In the extensional puri-
fying calculus, a literal may not be selected if it contains a variable that is applied to
different arguments in the clause. In the intensional purifying calculus, a literal may
not be selected if the literal contains an unapplied variable that also appears applied in
the clause. These restrictions are needed for our completeness proof, but it might be
possible to avoid them at the cost of a more elaborate argument.

6

Remark 2. In descriptions of first-order logic with equality, the property y ≈ y′ −�→
f(x̄,y, z̄)≈ f(x̄,y′, z̄) is often referred to as “function congruence.” It seems natural to use
the same label for the higher-order version t ≈ t′ −�→ s t ≈ s t′ and to call the symmetric
property s ≈ s′ −�→ s t ≈ s′ t “argument congruence,” whence the name ARGCONG for
our inference rule. Confusingly, the corresponding Isabelle/HOL theorems are called
arg_cong and fun_cong, respectively.

3.2 Rationale for the Inference Rules

A key restriction of all four calculi is that they superpose only onto argument sub-
terms, mirroring the requirement that the term order enjoy compatibility with function
contexts. The ARGCONG rule then makes it possible to simulate superposition onto
non-argument subterms. However, in conjunction with the SUP rules, ARGCONG can
exhibit an unpleasant behavior, which we call argument congruence explosion:

g ≈ f
ARGCONG

g x≈ f x h a 6≈ b
SUP

f a 6≈ b

g ≈ f
ARGCONG

g x y z≈ f x y z h a 6≈ b
SUP

f x y a 6≈ b

In both cases, the higher-order variable h is effectively the target of a SUP inference.
Such derivations essentially amount to superposition at variable positions (as shown on
the left) or even superposition below variable positions (as shown on the right), both
of which can be extremely prolific. In standard superposition, the explosion is averted
by the condition on the SUP rule that u /∈ V . In the extensional purifying calculus, the
variable condition tests that either u has a non-variable head or u does not jell with the
literal t ≈ t′ ∈ D, which prevents derivations such as the above. In the corresponding
nonpurifying variant, some such derivations may need to be performed when the term
order exhibits nonmonotonicity for the terms of interest.

In the intensional calculi, the explosion can arise because the variable conditions
are weaker. The following example shows that the intensional nonpurifying calculus
would be incomplete if we used the variable condition of the extensional nonpurifying
calculus. Consider a left-to-right LPO [13] instance with precedence h� g� f � b� a,
and consider the following unsatisfiable clause set:

h x≈ f x g (x b) x≈ a g (f b) h 6≈ a

The only possible inference is a SUP inference of the first into the second clause, but
the variable condition of the extensional nonpurifying calculus is not met. It is unclear
whether the variable condition of the intensional purifying calculus cannot be strength-
ened either, but our completeness proof suggests that it cannot.

The variable condition in the extensional calculi is designed to prevent the argu-
ment congruence explosion shown above, but since it only considers the shape of the
clauses, it might also block SUP inferences whose side premises do not originate from
ARGCONG. This is why we need the POSEXT rule. In the following unsatisfiable clause

7

set, the only possible inference from these clauses in the extensional nonpurifying cal-
culus is POSEXT, showing its necessity.

g x≈ f x g 6≈ f x (diff(x,y)) 6≈ y (diff(x,y)) ∨ x≈ y

The same argument applies for the purifying variant with the difference that the last
clause in this example must be purified.

Due to nonmonotonicity, for refutational completeness we need either to purify the
clauses or to allow some superposition at variable positions, as mandated by the re-
spective variable conditions. Without either of these measures, at least the extensional
calculi and presumably also the intensional calculi would be incomplete, as the next
example demonstrates. Consider the following clause set:

k (g x)≈ k (x b) k (f (h a) b) 6≈ k (g h) f (h a)≈ h f (h a) x≈ h x

Using a left-to-right LPO [13] instance with precedence k � h � g � f � b � a, this
clause set is saturated by the extensional purification variant when omitting purifica-
tion. It is also saturated by the extensional nonpurifying variant when omitting SUP
inferences at variables. By contrast, the intensional variants derive ⊥, even without
purification and without SUP inferences at variables, because of the less restrictive vari-
able conditions. This raises the question as to whether the intensional variants actually
need to purify or to perform SUP inferences at variables. Omitting purification and SUP
inferences at variables in the intensional calculi is complete when redundant clauses are
not deleted, but we conjecture that it is incomplete in general.

A significant advantage of our calculi over the use of standard superposition on
applicatively encoded problems is the flexibility they offer in orienting equations. The
following example gives two definitions of addition on Peano numbers:

addL 0 y≈ y addR x 0≈ x
addL (S x) y≈ addL x (S y) addR x (S y)≈ addR (S x) y

Let addL (S
100 0) n 6≈ addR n (S100 0) be the negated conjecture. With LPO, we can use a

left-to-right comparison for addL’s arguments and a right-to-left comparison for addR’s
arguments to orient all four equations from left to right. Then the negated conjecture
can be simplified to S100 n 6≈ S100 n by rewriting (demodulation), and ⊥ can be derived
with a single inference. If we use the applicative encoding instead, there is no instance
of LPO or KBO that can orient both recursive equations from left to right. For at least
one of the two sides of the negated conjecture, the rewriting is replaced by 100 SUP in-
ferences, which is much less efficient, especially in the presence of additional axioms.
More precisely, suppose we can simplify one side of the negated conjecture by rewrit-
ing, e.g. to S100 y 6≈ addR y (S100 0). After that, we must perform 100 SUP inferences
to derive addR y (S 0)≈ S y, addR y (S (S 0))≈ S (S y), . . . , addR y (S100 0)≈ S100 y.
From this last clause, we can easily derive ⊥.

We initially considered inference rules instead of the extensionality axiom. How-
ever, we did not find a set of inference that is complete and leads to fewer inferences
than the extensionality axiom. We considered the two inference rules

C∨ s x≈ t x
POSEXT

C∨ s≈ t

C∨ s≈ t
NEGEXT

C∨ s sk≈ t sk

8

where x is a fresh variable and sk is a fresh Skolem symbol. However, these two rules
do not suffice for a refutationally complete calculus, as the following example demon-
strates:

f x≈ a g x≈ a h f ≈ b h g 6≈ b

Assuming that all four equations are oriented from left to right, this set is saturated with
respect to the superposition inference rules extended with POSEXT and NEGEXT, yet
it is unsatisfiable in an extensional logic.

3.3 Redundancy Criterion

For our calculi, a redundant (or composite) clause cannot simply be defined as a clause
whose ground instances are entailed by smaller (≺) ground instances of existing clauses,
because this would make all ARGCONG inferences redundant. Our solution is to base
the redundancy criterion on a weaker ground logic in which argument congruence does
not hold. This logic also plays a central role in our completeness proof, to reason about
the nonmonotonicity emerging from the lack of compatibility with optional arguments.

The weaker logic is defined via an encoding b c of ground hybrid λ-free higher-
order terms into uncurried terms, with d e as its inverse. Accordingly, we refer to
clausal λ-free higher-order logic as the ceiling logic and to its weaker relative as the
floor logic. Essentially, the encoding indexes each symbol occurrence with its argument
count. Thus, bfc = f0 and bf ac = f1(a0). This is enough to disable argument congru-
ence; for example, {f ≈ g, f a 6≈ g a} is unsatisfiable, whereas its encoding {f0 ≈ g0,
f1(a0) 6≈ g1(a0)} is satisfiable. For clauses built from fully applied ground terms, the
two logics are isomorphic, as we would expect from a graceful generalization.

Given a signature Σ in the ceiling logic, we define a signature Σ↓ in the floor logic
as follows. For each higher-order type τ, we introduce an atomic type bτc in the floor
logic. For each symbol f : τ̄k ⇒ τk+1 → ··· → τn → υ in Σ, where υ is atomic, we
introduce symbols fm : bτ̄mc⇒ bτm+1 → ··· → τn → υc for m ∈ {k, . . . ,n}. Here and
elsewhere, we write bāc for the componentwise application of b c to the tuple ā. The
translation of ground terms is given by bf(ūk) uk+1 . . . umc= fm(būmc).

For example, let Σ = {f : ι2⇒ ι→ ι, a : ι}. The corresponding floor logic signature
is Σ↓ = {f2 : bιc2⇒ bι→ ιc, f3 : bιc3⇒ bιc, a0 : bιc} where bιc and bι→ ιc are atomic
types. The term bf(a,a) ac= f3(a0,a0,a0) is of type bιc, and bf(a,a)c= f2(a0,a0) is of
type bι→ ιc.

The b c mapping can be extended to ground literals and ground clauses:

bs≈ tc= bsc≈ btc
bs 6≈ tc= bsc 6≈ btc

bL1∨·· ·∨Lnc= bL1c∨·· ·∨bLnc

The b c mapping is bijective with d e:

dfk+i(t1, . . . , tk+i)e= f(dt1e, . . . ,dtke) dtk+1e . . . dtk+ie
ds≈ te= dse≈ dte
ds 6≈ te= dse 6≈ dte

dL1∨·· ·∨Lne= dL1e∨·· ·∨dLne

9

(In the first equation, k is determined by the type declaration of f.) Using d e, the clause
order� can be transferred to the floor logic by defining t� s as equivalent to dte� dse.
The property that � on clauses is the multiset extension of � on literals, which in turn
is the multiset extension of � on terms, is maintained because d e maps the multiset
representations elementwise.

Crucially, argument subterms in the ceiling logic correspond to argument subterms
in the floor logic (Lemma 3), whereas non-argument subterms in the ceiling logic are
not subterms at all in the floor logic. In the floor logic, the notions of subterms and
argument subterms coincide because the signature does not contain optional arguments.

Lemma 3. For all terms s and t in the floor logic, dt[s]pe= dte〈dse〉p.

Proof. By induction on p.
If p = ε, then s = t[s]p. Hence dt[s]pe= dse= dte〈dse〉p.
If p = i.p′, then t[s]p = fn(u1, . . . ,un) with ui = ui[s]p′ . Applying d e, we obtain by

the induction hypothesis that dt[s]pe equals

f(du1e, . . . ,dui−1e,duie〈dse〉p′ ,dui+1e, . . . ,duke) duk+1e . . . dune

or
f(du1e, . . . ,duke) duk+1e . . . dui−1e duie〈dse〉p′ dui+1e . . . dune

depending on whether the ith argument of f is mandatory or optional. In both cases, it
follows that dt[s]pe= dte〈dse〉p. ut

Lemma 4. Well-foundedness, totality on ground terms, compatibility with all contexts,
and the subterm property hold for � in the floor logic.

Proof. COMPATIBILITY WITH CONTEXTS: We want to show that s� s′ implies t[s]p�
t[s′]p for floor terms t, s and s′. Assuming s � s′, we have dse � ds′e. By compatibil-
ity with function contexts in the ceiling logic, we have dte〈dse〉p � dte〈ds′e〉p. By
Lemma 3, we have t[s]p � t[s′]p.

WELL-FOUNDEDNESS: Assume that there exists an infinite descending chain t1� t2�
·· · of floor terms. By applying d e, we then obtain an infinite descending chain of
ceiling terms dt1e� dt2e� ·· · , contradicting well-foundedness in the ceiling logic.

TOTALITY ON GROUND TERMS: Let s, t be ground terms of the floor logic. Then dte
and dse must be comparable by totality on ground ceiling terms. Hence, t and s are
comparable.

SUBTERM PROPERTY: By Lemma 3 and the subterm property in the ceiling logic,
dt[s]pe= dte〈dse〉p � dse. Hence, t[s]p � s. ut

In standard superposition, redundancy relies on the entailment relation |= on ground
clauses. We define redundancy of ceiling clauses in the same way, but using the floor
logic’s entailment relation. This notion of redundancy gracefully generalizes the first-
order notion without making all ARGCONG inferences redundant.

For SUP, EQFACT, and EQRES, we can use the more precise notion of redundancy
of inferences instead of redundancy of clauses, a ground inference being redundant if

10

the conclusion follows from existing clauses that are smaller than the largest premise.
For ARGCONG and POSEXT, we must use redundancy of clauses.

More precisely we define redundancy as follows: A ground ceiling clause C is re-
dundant with respect to a set of ceiling ground clauses N if bCc is entailed by clauses
from bNc that are smaller than bCc. A possibly nonground ceiling clause C is redun-
dant with respect to a set of ceiling clauses N if all its ground instances are redundant
with respect to GΣ(N), the set of ground instances of clauses in N. Let Red(N) be the
set of all clauses that are redundant with respect to N.

For all inference rules except ARGCONG and POSEXT, a ground inference with
conclusion E and right (or only) premise C is redundant with respect to a set of ground
clauses N if one of its premises is redundant with respect to N, or if bEc is entailed
by clauses in bNc that are smaller than bCc. A nonground inference is redundant with
respect to a clause set N if all its ground instances are redundant with respect to GΣ(N).

An ARGCONG or POSEXT inference is redundant with respect to a clause set N
if its premise is redundant with respect to N or if its conclusion is contained in N or
redundant with respect to N.

We call N saturated up to redundancy if every inference from clauses in N is redun-
dant with respect to N.

3.4 Skolemization

A problem expressed in λ-free higher-order logic must be transformed into clausal nor-
mal form before the calculi can be applied. This process works as in the first-order case,
except for skolemization. The issue is that skolemization, when performed naively, is
unsound for λ-free higher-order logic with a Henkin semantics. For example, given
f : τ→ υ, the formula (∀y. ∃x. f x ≈ y) ∧ (∀z. f (z a) 6≈ a) has the following model.
Let Uτ = Uυ = {a1,a2} and J (a) = a1. Let Uτ→υ = { f} and J (f) = f . We interpret
f as the identity function by setting Eτ,υ(f)(ai) = ai for i = 1,2. Let Uυ→τ = {g} and
Eυ,τ(g)(ai) = a2 for i = 1,2. As a consequence, z cannot be interpreted as a function
mapping J (a) to J (a) and hence the formula is true in this interpretation. Yet, naive
skolemization would yield the clause set {f (sk y)≈ y, f (z a) 6≈ a}, whose unsatisfiabil-
ity can be shown by taking y := a and z := sk. The crux of the issue is that sk denotes a
new function that can be used to instantiate z.

Inspired by Miller [40, Section 6], we adapt skolemization as follows. An existen-
tially quantified variable x : τ in a context with universally quantified variables x̄n of
types τ̄n is replaced by a fresh symbol sk : τ̄n⇒ τ applied to the tuple x̄n. For the exam-
ple above, we obtain {f (sk(y))≈ y, f (z a) 6≈ a}. Syntactically, z cannot be instantiated
by sk, which is not even a term. Semantically, the clause set is satisfiable because we
can have J (sk)(J (a)) = J (a) even if the image of Eτ,τ contains no such function.

4 Refutational Completeness

The proof of refutational completeness of the four calculi introduced in Section 3.1 fol-
lows the same general idea as for standard superposition [3, 42]. We use the structure
and notation of Waldmann’s version [59], which is essentially the completeness proof

11

for superposition without constraints [3] presented in the style of the proof for super-
position with constraints by Nieuwenhuis and Rubio [41]. Given a clause set N 63 ⊥
saturated up to redundancy, we construct a term rewriting system R based on the set of
ground instances GΣ(N). From R, we define an interpretation. We show, by induction
on the clause order, that this interpretation is a model of GΣ(N) and hence of N.

To circumvent the term order’s potential nonmonotonicity, our SUP inference rule
only considers the argument subterms u of a maximal term s〈u〉. This is reflected in our
proof by the reliance of the floor logic from Section 3.3. In that logic, the equation g0 ≈
f0 cannot be used directly to rewrite the clause g1(a0) 6≈ f1(a0); instead, we first need
to apply ARGCONG to derive g1(x)≈ f1(x) and then use that equation. The floor logic
is a device that enables us to reuse the traditional model construction almost verbatim,
including its reliance on a first-order term rewriting system.

Following the traditional proof, we obtain a model of bGΣ(N)c. Since N is saturated
up to redundancy with respect to ARGCONG, the model bGΣ(N)c can easily be turned
into a model of GΣ(N) by conflating the interpretations of the members fk, . . . , fn of a
same symbol family.

For this section, we fix a set N 63 ⊥ of λ-free higher-order clauses that is saturated
up to redundancy. For the purifying calculi, we additionally require that all clauses in
N are purified. To avoid empty Herbrand universes, we assume that the signature Σ

contains, for each type τ, a symbol of type τ.

4.1 Candidate Interpretation

The construction of the candidate interpretation is as in the first-order proof, except
that it is based on bGΣ(N)c. We first define sets of rewrite rules EC and RC for all C ∈
bGΣ(N)c by induction on the clause order. Assume that ED has already been defined for
all D ∈ bGΣ(N)c with D≺C. Then RC =

⋃
D≺C ED. Let EC = {s→ t} if the following

conditions are met:

(a) C = C′∨ s≈ t;
(b) s≈ t is strictly maximal in C;
(c) s� t;
(d) C is false in RC ;
(e) C′ is false in RC ∪{s→ t}; and
(f) s is irreducible with respect to RC .

Then C is productive. Otherwise, EC = /0. Finally, R∞ =
⋃

D ED.

A rewrite system R defines an interpretation T /0
Σ
/R such that for every ground equa-

tion s ≈ t, we have T /0
Σ
/R |= s ≈ t if and only if s ↔∗R t. Moreover, T /0

Σ
/R is term-

generated—that is, for every element a of a universe of this interpretation, there exists
a ground term t such that JtKξT /0

Σ
/R = a. To lighten notation, we will write R to refer to

both the term rewriting system R and the interpretation T /0
Σ
/R.

The following properties of the candidate interpretations can be shown exactly as in
Waldmann’s version of the first-order proof [59].

Lemma 5. The rewrite systems RC and R∞ are confluent and terminating.

12

Lemma 6. If D ∈ bGΣ(N)c is true in RD, then D is true in R∞ and RC for all C � D.

Lemma 7. If D = D′∨u≈ v is productive, then D′ is false and D is true in R∞ and RC
for all C � D.

4.2 Lifting Lemmas

Following Waldmann’s proof [59], we proceed by lifting inferences from the ground to
the nonground level. We also need to lift ARGCONG. A complication that arises when
lifting purifying inferences is that the nonground conclusions may contain purifica-
tion literals (corresponding to applied variables) not present in the ground conclusions.
Given an inference I of the form C̄ ` pure(E), we refer to the ground instances of C̄ ` E
as ground instances of I up to purification.

It is essential to the lifting lemmas that the selected literals of a clause correpond
to the selected literals in its ground instances. However, there is no need to impose this
as a restriction to the selection function. Instead, following Bachmair and Ganzinger
[4, p. 45], let S be the selection function with respect to which N is saturated up to
redundancy. We introduce another selection function SN , such that each clause C ∈
GΣ(N) is a ground instance of a clause D ∈ N such that the selections S(D) and SN(C)
coincide. In the remainder of the proof, we adhere to the following convention:

Convention 8. When we speak about selected literals of clauses in N, it is with respect
to the selection function S. When we speak about selected literals of clauses in GΣ(N),
it is with respect to the selection function SN .

This auxiliary lemma is useful in the lifting lemma proofs:

Lemma 9. Let σ be the most general unifier of s and s′ (which can be assumed idem-
potent [58, Theorem 3.27]). Let θ be an arbitrary unifier of s and s′. Then σθ = θ.

Proof. Since σ is most general, there exists a substitution ρ, such that σρ = θ. There-
fore, by idempotence, σθ = σσρ= σρ= θ. ut

Lemma 10 (Lifting of non-SUP inferences). Let Cθ ∈ GΣ(N), where θ is a substitu-
tion and the selected literals in C ∈ N correspond to those in Cθ (using S for C and SN
for Cθ as mentioned in Convention 8). Then every EQRES or EQFACT inference from
Cθ and every ground instance of an ARGCONG inference from Cθ is a ground instance
of an inference from C up to purification.

Proof. EQRES: We assume that there is a EQRES inference from Cθ. This means that
Cθ is of the form Cθ=C′θ∨ sθ 6≈ s′θ where C =C′∨ s 6≈ s′, and sθ 6≈ s′θ is selected or
no literal of Cθ is selected and sθ 6≈ s′θ is maximal. Then the ground inference is

C′θ∨ sθ 6≈ s′θ
EQRES

C′θ

13

where sθ and s′θ are unifiable and ground; hence sθ = s′θ. Since sθ 6≈ s′θ is maximal
(and nothing is selected) or selected in Cθ, s 6≈ s′ is maximal (and nothing is selected)
or selected in C. Hence we have the inference

C′∨ s 6≈ s′
EQRES

C′σ∨CP

where σ = mgu(s, s′) and CP are purification literals. By Lemma 9, we have C′σθ =
C′θ. Thus, the ground inference is the θ-ground instance of the nonground inference up
to purification literals.

EQFACT: We assume that there is a EQFACT inference from Cθ. This means that Cθ is
of the form Cθ=C′θ∨ s′θ≈ t′θ∨ sθ≈ tθ where sθ≈ tθ is maximal, no literal is selected
in Cθ, sθ 6≺ tθ, and C = C′∨ s′ ≈ t′∨ s≈ t. Then the ground inference is

C′θ∨ s′θ ≈ t′θ∨ sθ ≈ tθ
EQFACT

C′θ∨ tθ 6≈ t′θ∨ sθ ≈ t′θ

where sθ and s′θ are unifiable and ground; hence sθ = s′θ. Since sθ ≈ tθ is maximal in
Cθ, nothing is selected in Cθ, and sθ 6≺ tθ, s≈ t is maximal in C, nothing is selected in
C, and s 6≺ t. Hence we have the inference

C′∨ s′ ≈ t′∨ s≈ t
EQFACT

(C′∨ t 6≈ t′∨ s≈ t′)σ∨CP

where σ = mgu(s, s′) and CP are purification literals. By Lemma 9, we have (C′∨ t 6≈
t′ ∨ s ≈ t′)σθ = C′θ∨ tθ 6≈ t′θ∨ sθ ≈ t′θ. Thus, the ground inference is the θ-ground
instance of the nonground inference up to purification literals.

ARGCONG: We assume that there is an ARGCONG inference from Cθ. This means that
Cθ is of the form Cθ = C′θ∨ sθ ≈ s′θ, where sθ ≈ s′θ is strictly maximal, no literal is
selected in Cθ, and C = C′∨ s≈ s′. Then the inference from Cθ is

C′θ∨ sθ ≈ s′θ
ARGCONG

C′θ∨ sθ x̄≈ s′θ x̄

There cannot be purification literals because the premise is ground. Every ground in-
stance of this inference has the form

C′θ∨ sθ ≈ s′θ
ARGCONG

C′θ∨ sθ v̄≈ s′θ v̄

Since sθ 6≈ s′θ is strictly maximal in Cθ, s ≈ s′ is strictly maximal in C. Since
nothing is selected in Cθ, nothing is selected in C. Hence we have the inference

C′∨ s≈ s′
ARGCONG

C′∨ s x̄≈ s′ x̄∨CP

where CP are purification literals. Thus, the ground inference is the θ[x1 7→ v1, . . . xn 7→
vn]-ground instance of this inference from C up to purification literals. ut

14

The conditions of the lifting lemma for SUP differ slightly from the first-order ver-
sion. For standard superposition, the lemma applies if the superposed term is not at or
under a variable. This condition is replaced by the following criterion.

Definition 11. We call a ground SUP inference from Dθ and Cθ liftable if the super-
posed subterm in Cθ is not under a variable in C and the correponding variable condition
holds for D and C.

Lemma 12 (Lifting of SUP inferences). Let Dθ,Cθ ∈ GΣ(N) where the selected lit-
erals in D ∈ N and C ∈ N correspond to those in Dθ and Cθ, respectively. Then every
liftable SUP inference between Dθ and Cθ is a ground instance of a SUP inference from
D and C up to purification.

Proof. We assume that there is a ground SUP inference of Dθ in Cθ. Let t ≈ t′ ∈ D and
[¬] s≈ s′ ∈C be the literals involved in this inference. This means that tθ≈ t′θ is strictly
maximal and nothing is selected in Dθ. For positive superposition, sθ ≈ s′θ is strictly
maximal and nothing is selected in Cθ. For negative superposition, either sθ 6≈ s′θ is
maximal and nothing is selected or sθ 6≈ s′θ is selected in Cθ. Moreover, Dθ 6� Cθ,
tθ 6≺ t′θ, and sθ 6≺ s′θ. The ground inference is

D′θ∨ tθ ≈ t′θ C′θ∨ [¬] sθ〈tθ〉p ≈ s′θ
SUP

D′θ∨C′θ∨ [¬] sθ〈t′θ〉p ≈ s′θ

The inference conditions can be lifted: That tθ ≈ t′θ is strictly maximal in Dθ implies
that t ≈ t′ is strictly maximal in D. That nothing is selected in Dθ implies that nothing
is selected in D. If [¬] sθ ≈ s′θ is (strictly) maximal and nothing is selected in Cθ, then
[¬] s≈ s′ is (strictly) maximal and nothing is selected in C. If sθ 6≈ s′θ is selected in Cθ,
then s 6≈ s′ is selected in C. Dθ 6� Cθ implies D 6� C. tθ 6≺ t′θ implies t 6≺ t′. sθ 6≺ s′θ
implies s 6≺ s′.

The variable condition holds and that p is a position of s, because the ground infer-
ence is liftable. The argument subterm u of s at position p is unifiable with t, because θ
is a unifier. So we have the nonground inference

D′∨ t ≈ t′ C′∨ [¬] s〈u〉p ≈ s′
SUP

(D′∨C′∨ [¬] s〈t′〉p ≈ s′)σ∨CP

where σ= mgu(t,u) and CP are purification literals. By Lemma 9, we have (D′∨C′∨
[¬] s〈t′〉p ≈ s′)σθ = D′θ∨C′θ∨ [¬] sθ〈t′θ〉p ≈ s′θ. Thus, the ground inference is the θ-
ground instance of the nonground inference up to purification literals. ut

4.3 Main Result

The candidate interpretation R∞ is a model of bGΣ(N)c. Like in the first-order proof,
this is shown by induction on the clause order. For the induction step, we fix some
clause bCθc ∈ bGΣ(N)c and assume that all smaller clauses are true in RCθ. We distin-
guish several cases, most of which amount to showing that Cθ can be used in a certain
inference. Then we deduce that bCθc is true in RCθ to complete the induction step.

15

The next two lemmas are slightly adapted from the first-order proof. The justifica-
tion for Lemma 13, about liftable inferences, is essentially as in the first-order case.
The proof of Lemma 14, about nonliftable inferences, is more problematic. The stan-
dard argument involves defining a substitution θ′ such that Cθ′ and Cθ are equivalent
and Cθ′ ≺ Cθ. But due to nonmonotonicity, we might have Cθ′ � Cθ, blocking the ap-
plication of the induction hypothesis. This is where the variable conditions, purification,
and the POSEXT rule come into play.

Lemma 13. Let Dθ,Cθ ∈ GΣ(N), where the selected literals in D ∈ N and in C ∈ N
correspond to those in Dθ and Cθ, respectively. We consider a liftable SUP inference
from Dθ and Cθ or an EQRES or EQFACT inference from Cθ. Let E be the conclusion.
Assume that Cθ and Dθ are nonredundant with respect to GΣ(N). Then bEc is entailed
by clauses from bGΣ(N)c that are smaller than bCθc.

Proof. We have a liftable SUP inference from Dθ and Cθ or an EQRES or EQFACT
inference from Cθ. As shown in the lifting lemmas (Lemmas 10 and 12), up to purifi-
cation literals in the conclusion, this inference is an instance of an inference from C
(or from D and C for SUP inferences). Let Ẽ be its conclusion. Since N is saturated
up to redundancy, this inference is redundant with respect to N and hence the θ-ground
instance of this inference is redundant with respect to GΣ(N). By definition of infer-
ence redundancy, since Cθ is not redundant with respect to GΣ(N), bẼθc is entailed by
clauses from bGΣ(N)c that are smaller than bCθc.

By Lemma 9, we have Ẽθ = E for the nonpurifying variants. In the purifying vari-
ants, we extend θ to the purification variables by copying the values of the original
variable. Then the literals of bẼθc corresponding to purification literals are trivially
false and hence bEc is equivalent to bẼθc. In all variants, it follows that bEc is entailed
by clauses in bGΣ(N)c that are smaller than bCθc. ut

Lemma 14. Let Dθ,Cθ ∈ GΣ(N), where the selected literals in D ∈ N and in C ∈ N
correspond to those in Dθ and Cθ, respectively. We consider a nonliftable SUP inference
from Dθ and Cθ. Assume that Cθ and Dθ are nonredundant with respect to GΣ(N). Let
D′θ be the clause Dθ without the literal involved in the inference. Then bCθc is entailed
by ¬bD′θc and the clauses in bGΣ(N)c that are smaller than bCθc.

Proof. Let Cθ = C′θ∨ [¬] sθ ≈ s′θ and Dθ = D′θ∨ tθ ≈ t′θ, where [¬] sθ ≈ s′θ and
tθ≈ t′θ are the literals involved in the inference, sθ� s′θ, tθ� t′θ, and C′, s, s′, t, t′ are
the respective subclauses and terms in C and D.

Let R be an interpretation such that bD′θc is false and the clauses in bGΣ(N)c that
are smaller than bCθc are true. Since Cθ � Dθ by the SUP order conditions, it follows
that R |= btθ ≈ t′θc. We must show that R |= bCθc.

The inference from Dθ and Cθ can be nonliftable either because it is a superposition
below a variable or because the variable condition does not hold for the corresponding
inference between D and C.

CASE 1: We assume that it is a superposition below a variable, say, x. Let tθ ≈ t′θ be
the strictly maximal literal of Dθ, where tθ � t′θ. Then tθ is an argument subterm of xθ
and hence an argument subterm of xθ w̄ for any arguments w̄. Let v be the term that we

16

obtain by replacing tθ by t′θ in xθ at the relevant position. It follows from the definition
of R that R |= btθ ≈ t′θc and by congruence, R |= bxθ w̄ ≈ v w̄c for any arguments w̄.
Hence, R |= bCθc if and only if R |= bC[x 7→ v]θc. By the inference conditions we have
tθ � t′θ, which implies bCθc � bC[x 7→ v]θc by compatibility with function contexts.
Therefore, by the assumption about R, we have R |= bC[x 7→ v]θc and hence R |= bCθc.

CASE 2: The variable condition does not hold in the corresponding inference between
D and C. Let u denote the superposed subterm of s.

Since the variable condition does not hold, u has a variable head and jells with
t ≈ t′. For the intensional variants, we even have u ∈ V . For the nonpurifying variants,
we additionally have Cθ�C′′θ, where C′′ = C[x 7→ t̃ ′]. By Definition 1, in all variants,
u, t, and t′ have the following form: u = x v̄ for some variable x and n terms v̄, for n≥ 0;
t = t̃ x̄n and t′ = t̃ ′ x̄n, where x̄n are variables that do not occur elsewhere in D. For the
intensional variants, we have n = 0.

CASE 2.1 (PURIFYING CALCULI): First, we assume that x occurs only with arguments
v̄ in C. For the intensional variant, this must be the case because n = 0 and hence x can
only occur without arguments by the definition of pure due to the selection restriction.
Define a substitution θ′ by xθ′ = t̃ ′θ and yθ′ = yθ for other variables y. Since tθ � t′θ,
we have Cθ � Cθ′. Moreover, Cθ′ ∈ GΣ(N). Then R |= bCθc by congruence, because
R |= bCθ′c and R |= btθ ≈ t′θc.

Now we assume that x occurs with arguments other than v̄ in C. This can only
happen in the extensional variant and by the selection restrictions, [¬] sθ ≈ s′θ may not
be selected in Cθ. Therefore, sθ is the maximal term in Cθ. Then s 6= x and hence v̄ 6= ε
because otherwise sθ = xθ would be smaller than the applied occurrence of xθ in Cθ.

Define a substitution θ′′ such that xθ′′ = t̃ ′θ, yθ′′ = t̃ ′θ for other variables y if yθ= sθ
and C contains the literal x 6≈ y, and yθ′′ = yθ otherwise.

We show that Cθ�Cθ′′ by proving that no literal of Cθ′′ is larger than the maximal
literal [¬] sθ ≈ s′θ of Cθ and that [¬] sθ ≈ s′θ appears more often in Cθ than in Cθ′′:

For a literal of the form x 6≈ y, we have xθ′′ ≺ sθ and yθ′′ ≺ sθ. For literals that are
not of this form, by the definition of pure in the extensional variant, x occurs always
with arguments v̄. Hence these literals are equal or smaller in Cθ′′ than in Cθ, because
xθ′′ v̄≺ xθ v̄ and yθ′′ � yθ. Therefore, no literal of Cθ′′ is larger than the maximal literal
[¬] sθ ≈ s′θ of Cθ. Moreover, these inequalities show that every occurrence of [¬] sθ ≈
s′θ in Cθ′′ corresponds to an occurrence of [¬] sθ ≈ s′θ in Cθ that corresponds to a
literal in C without the variable x. Since at least one occurrence of [¬] sθ ≈ s′θ in Cθ
corresponds to a literal in C containing x, [¬] sθ ≈ s′θ appears more often in Cθ than in
Cθ′′. This concludes the argument that Cθ �Cθ′′.

A POSEXT inference from D to D′ ∨ t̃ ≈ t̃ ′ is possible. Therefore, D′ ∨ t̃ ≈ t̃ ′ is in
N or redundant with respect to to N because N is saturated up to redundancy. In either
case, R |= b(D′∨ t̃ ≈ t̃ ′)θc because this clause is smaller than Cθ. Since D′θ is false in
R, we have R |= bt̃θ ≈ t̃ ′θc.

For every literal of the form x 6≈ y, where yθ = sθ, the variable y can only occur
without arguments in C because of the maximality of sθ. Since Cθ � Cθ′′, we have
R |= bCθ′′c. If for every literal of the form x 6≈ y, where yθ= sθwe have R |= byθ′′≈ yθc,
then R |= bCθc by congruence. If for some literal of the form x 6≈ y where yθ = sθ we

17

have R |= byθ′′ 6≈ yθc, then R |= byθ 6≈ xθc because yθ′′ = t̃ ′θ, R |= bt̃ ′θ ≈ t̃θc, and
t̃θ = xθ. Hence a literal of Cθ is true in R and therefore Cθ is true in R.

CASE 2.2 (NONPURIFYING CALCULI): Since the variable condition does not hold,
we have Cθ�C′′θ. We cannot have Cθ=C′′θ because xθ= t̃θ 6= t̃ ′θ and x occurs in C.
Hence, we have Cθ �C′′θ.

By the definition of R, Cθ�C′′θ implies R |= bC′′θc. We will use equalities that are
true in R to rewrite bCθc into bC′′θc, which implies R |= bCθc by congruence.

By saturation up to redundancy, for any type-correct tuple of fresh variables z̄, we
can use a POSEXT inference with premise D (if n < length(z̄)) or ARGCONG inference
with premise D (if n > length(z̄)) or using D itself (if n = length(z̄)) to show that up to
variable renaming D′ ∨ t̃ z̄ ≈ t̃ ′ z̄ is in GΣ(N ∪Red(N)). Hence, D′θ∨ t̃θ ū ≈ t̃ ′θ ū is in
GΣ(N∪Red(N)) for any type-correct ground arguments ū.

First, we observe that whenever t̃θ ū and t̃ ′θ ū are smaller than the maximal term of
Cθ for some arguments ū, we have

R |= bt̃θ ūc≈ bt̃ ′θ ūc (†)

To show this, we assume that t̃θ ū and t̃ ′θ ū are smaller than the maximal term of Cθ
and we distinguish two cases: If tθ is smaller than the maximal term of Cθ, all terms in
D′θ are smaller than the maximal term of Cθ and hence D′θ∨ t̃θ ū ≈ t̃ ′θ ū ≺ Cθ. If, on
the other hand, tθ is equal to the maximal term of Cθ, t̃θ ū and t̃ ′θ ū are smaller than tθ.
Hence t̃θ ū≈ t̃ ′θ ū≺ tθ≈ t′θ and D′θ∨ t̃θ ū≈ t̃ ′θ ū≺ Dθ≺Cθ. In both cases, since D′θ
is false in R, by the definition of R, R |= bt̃θ ūc≈ bt̃ ′θ ūc.

We proceed by a case distinction on whether sθ appears in a selected or in a maximal
literal of Cθ. In both cases we provide an algorithm that establishes the equivalence of
Cθ and C′′θ via rewriting using (†). This might seem trivial at first sight, but we can
only use the equations (†) if t̃θ ū and t̃ ′θ ū are smaller than the maximal term of Cθ.
Moreover, ū might itself contain positions where we want to rewrite, such that the order
of rewriting matters.

CASE 2.2.1: sθ is the maximal side of a maximal literal of Cθ. Then, since Cθ �
C′′θ, every term in Cθ and in C′′θ is smaller or equal to sθ. Let C0 and C̃0 be the
clauses resulting from rewriting btθc→ bt′θc wherever possible in bCθc and bC′′θc,
respectively. Since btθc is a subterm of bsθc, now every term in C0 and C̃0 is strictly
smaller than bsθc.

We define C1,C2, . . . inductively as follows: Given Ci, choose a subterm of the form
bt̃θ ūc where t̃θ ū � t̃ ′θ ū or of the form bt̃ ′θ ūc where t̃ ′θ ū � t̃θ ū. Let Ci+1 be the
clause resulting from rewriting that subterm bt̃θ ūc to bt̃ ′θ ūc or that subterm bt̃ ′θ ūc to
bt̃θ ūc in Ci, depending on which term was chosen.

Analogously, we define C̃1,C̃2, . . . by applying the same algorithm to C̃0. In both
cases, the process terminates because � is of compatible with function contexts and
well founded. Let C∗ and C̃∗ be the respective final clauses.

The algorithm preserves the invariant that every term in Ci and C̃i is strictly smaller
than sθ. By congruence via (†), applied at every step of the algorithm, we know that C∗
and bCθc are equivalent in R and that C̃∗ and bC′′θc are equivalent in R as well.

We show that C∗ = C̃∗. Assume that C∗ 6= C̃∗. The algorithm preserves a second in-
variant, namely that dCie and dC̃ je are equal except for positions where one contains t̃θ

18

and the other one contains t̃ ′θ. Consider the deepest position where dC∗e and dC̃∗e are
different. The respective position in C∗ and C̃∗ then contains bt̃θ ūc and bt̃ ′θ ūc or vice
versa. The arguments ū must be equal because we consider the deepest position possi-
ble. But then t̃θ ū � t̃ ′θ ū or t̃θ ū ≺ t̃ ′θ ū, which contradicts the fact that the algorithm
terminated in C∗ and C̃∗.

This shows that C∗ = C̃∗. Hence bCθc and bC′′θc are equivalent, which proves
R |= bCθc.

CASE 2.2.2: sθ is the maximal side of a selected literal of Cθ. Then, by the selection
restrictions, x cannot be the head of a maximal literal of C.

At every position where x ū occurs in C with some (or no) arguments ū, we rewrite
(t̃ ū)θ to (t̃ ′ ū)θ in Cθ if (t̃ ū)θ � (t̃ ′ ū)θ. We start with the innermost occurrences of x,
such that the order of the two terms at one step does not change by later rewriting.

Analogously, at every position where x ū occurs in C with some (or no) arguments ū,
we rewrite (t̃ ′ ū)θ to (t̃ ū)θ in C′′θ if (t̃ ′ ū)θ � (t̃ ū)θ, again starting with the innermost
occurrences.

We never rewrite at the top level of the maximal term of Cθ or C′′θ because x cannot
be the head of a maximal literal of C. The two resulting clauses are identical because Cθ
and C′′θ only differ at positions where x occurs in C. The rewritten terms are all smaller
than the maximal term of Cθ. With (†), this implies that R |= Cθ by congruence. ut

Using these two lemmas, the induction argument works as in the first-order case.

Lemma 15 (Model construction). Let bCθc ∈ bGΣ(N)c. We have

(i) EbCθc = /0 if and only if RbCθc |= bCθc;
(ii) if Cθ is redundant with respect to GΣ(N), then RbCθc |= bCθc;

(iii) bCθc is true in R∞ and in RD for every D ∈ bGΣ(N)c with D� bCθc; and
(iv) if Cθ has selected literals, then RbCθc |= bCθc.

Proof. We use induction of the clause order� on floor logic ground clauses and assume
that (i)–(iv) are already satisfied for all clauses in bGΣ(N)c that are smaller than bCθc.
The ‘if’ part of (i) is obvious from the construction and that condition (iii) follows from
(i) by Lemmas 6 and 7. So it remains to show (ii), (iv), and the ‘only if’ part of (i), i.e.,
we show the following: If EbCθc = /0 or Cθ is redundant with respect to GΣ(N) or Cθ
has selected literals, then RbCθc |= bCθc. Without loss of generality, we assume that the
selected literals in C ∈ N correspond to those in Cθ.

CASE 1: Cθ is redundant with respect to GΣ(N). Then bCθc is entailed by clauses
from bGΣ(N)c that are smaller than bCθc. By part (iii) of the induction hypothesis,
these clauses are true in RbCθc. Hence bCθc is true in RbCθc.

CASE 2: Cθ is not redundant with respect to GΣ(N) and Cθ contains an eligible neg-
ative literal. Let sθ 6≈ s′θ with sθ � s′θ be one of these literals and C′θ the rest of the
clause.

CASE 2.1: sθ = s′θ. Then there is an EQRES inference:

C′θ∨ sθ 6≈ s′θ
EQRES

C′θ

19

By Lemma 13, bC′θc is entailed by clauses from bGΣ(N)c that are smaller than bCθc.
By part (iii) of the induction hypothesis, these clauses are true in RbCθc, which implies
that bC′θc and hence bCθc are true in RbCθc.

CASE 2.2: sθ � s′θ. If R |= bsθ 6≈ s′θc, then it follows directly that R |= bCθc. So we
assume that bsθc ↓RbCθc bs′θc (i.e., bsθc and bs′θc have the same normal form), which
means that R |= bsθ ≈ s′θc. Since sθ � s′θ, bsθc must be reducible by some rule in
some EbDθc ⊆ RbCθc. Without loss of generality, we assume that the selected literals in
D ∈ N correspond to those in Dθ and that C and D are variable disjoint; so we can use
the same substitution θ. Let Dθ = D′θ∨ tθ ≈ t′θ with EbDθc = {btθc→ bt′θc}.

There is a SUP inference

D′θ ∨ tθ ≈ t′θ C′θ ∨ sθ〈tθ〉 6≈ s′θ
SUP

D′θ ∨C′θ ∨ sθ〈t′θ〉 6≈ s′θ

If this inference is not liftable, by Lemma 14, ¬bD′θc and the clauses in bGΣ(N)c that
are smaller than bCθc imply bCθc. Since bDθc is productive, bD′θc is false in RbCθc
by Lemma 7. By part (iii) of the induction hypothesis, all clauses in bGΣ(N)c that are
smaller than bCθc are true in RbCθc. Therefore, bCθc is true in RbCθc.

If this inference is liftable, by Lemma 13, bD′θ ∨ C′θ ∨ sθ〈t′θ〉 6≈ s′θc is entailed
by clauses from bGΣ(N)c that are smaller than bCθc. By part (iii) of the induction
hypothesis, bD′θ ∨ C′θ ∨ sθ〈t′θ〉 6≈ s′θc is then true in RbCθc. Since bD′θc is false in
RbCθc, it follows that RbCθc |= C′θ or RbCθc |= sθ〈t′θ〉 6≈ s′θ. In the latter case, we have
RbCθc |= sθ〈tθ〉 6≈ s′θ because tθ→ tθ′ ∈ RbCθc. Hence, in both cases, RbCθc |= Cθ.

CASE 3: Cθ is not redundant and contains no eligible negative literal. Then nothing is
selected in Cθ and Cθ can be written as C′θ∨ sθ≈ s′θ, where sθ≈ s′θ is a maximal lit-
eral. If EbCθc = {bsθc→ bs′θc} or RbCθc |= bC′θc or sθ= s′θ, there is nothing to show,
so assume that EbCθc = /0 and that bC′θc is false in RbCθc. Without loss of generality,
sθ � s′θ.

CASE 3.1: bsθ ≈ s′θc is maximal in bCθc, but not strictly maximal. Then Cθ can be
written as C′′θ ∨ tθ ≈ t′θ ∨ sθ ≈ s′θ, where tθ = sθ and t′θ = s′θ. In this case, there is a
EQFACT inference

Cθ = C′′θ ∨ tθ ≈ t′θ ∨ sθ ≈ s′θ
EQFACT

C′′θ ∨ t′θ 6≈ s′θ ∨ tθ ≈ t′θ

By Lemma 13, its conclusion is entailed by clauses from bGΣ(N)c that are smaller than
bCθc. By part (iii) of the induction hypothesis, these clauses are true in RbCθc, which
implies that bC′′θ ∨ t′θ 6≈ s′θ ∨ tθ ≈ t′θc is true in RbCθc. Since t′θ = s′θ and hence
bt′θ 6≈ s′θc is false in RbCθc, this implies that RbCθc |= bCθc.

CASE 3.2: sθ ≈ s′θ is strictly maximal in Cθ and bsθc is reducible by RbCθc. Let
btθc→ bt′θc ∈ RbCθc be a rule that reduces bsθc. This rule stems from a productive
clause bDθc= bD′θ ∨ tθ≈ t′θc. Without loss of generality, we assume that the selected
literals in D ∈ N correspond to those in Dθ and that C and D are variable disjoint; so
we can use the same substitution θ.

20

We can now proceed in essentially the same way as in Case 2.2: There is a SUP
inference

D′θ ∨ tθ ≈ t′θ C′θ ∨ sθ〈tθ〉 ≈ s′θ
SUP

D′θ ∨C′θ ∨ sθ〈t′θ〉 ≈ s′θ

If this inference is not liftable, by Lemma 14, ¬bD′θc and the clauses in bGΣ(N)c that
are smaller than bCθc imply bCθc. Since bDθc is productive, bD′θc is false in RbCθc
by Lemma 7. By part (iii) of the induction hypothesis, all clauses in bGΣ(N)c that are
smaller than bCθc are true in RbCθc. Therefore, bCθc is true in RbCθc.

If this inference is liftable, by Lemma 13, bD′θ ∨ C′θ ∨ sθ〈t′θ〉 ≈ s′θc is entailed
by clauses from bGΣ(N)c that are smaller than bCθc. By part (iii) of the induction
hypothesis, bD′θ ∨ C′θ ∨ sθ〈t′θ〉 ≈ s′θc is then true in RbCθc. Since bD′θc is false in
RbCθc, it follows that RbCθc |= C′θ or RbCθc |= sθ〈t′θ〉 ≈ s′θ. In the latter case, we have
RbCθc |= sθ〈tθ〉 ≈ s′θ because tθ→ tθ′ ∈ RbCθc. Hence, in both cases, RbCθc |= Cθ.

CASE 3.3: sθ ≈ s′θ is strictly maximal in Cθ and bsθc is irreducible with respect to
RbCθc. Since Cθ is not redundant, we have EbCθc = /0. We assume that Cθ is false. By the
definition of EbCθc, bC′θc must be true in RbCθc∪{bsθc→ bs′θc}. Then C′θ = C′′θ ∨
tθ≈ t′θ, where the literal btθ≈ t′θc is true in RbCθc∪{bsθc→ bs′θc} and false in RbCθc.
In other words, btθc ↓RbCθc∪{bsθc→bs′θc} bt′θc, but not btθc ↓RbCθc bt′θc. Consequently,
there is a rewrite proof of btθc→∗ buc←∗ bt′θc by RbCθc∪{bsθc→ bs′θc} in which
the rule bsθc→ bs′θc is used at least once. Without loss of generality, we assume that
tθ � t′θ. Since sθ ≈ s′θ � tθ ≈ t′θ and sθ � s′θ we can conclude that sθ � tθ � t′θ. But
then there is only one possibility how the rule bsθc→ bs′θc can be used in the rewrite
proof: We must have sθ= tθ and the rewrite proof must have the form btθc→ bs′θc→∗
buc←∗ bt′θc, where the first step uses bsθc→ bs′θc and all other steps use rules from
RbCθc. Consequently, bs′θ≈ t′θc is true in RbCθc. Now observe that there is an EQFACT
inference

C′′θ ∨ tθ ≈ t′θ ∨ sθ ≈ s′θ
EQFACT

C′′θ ∨ t′θ 6≈ s′θ ∨ tθ ≈ t′θ

By Lemma 13, its conclusion is entailed by clauses from bGΣ(N)c that are smaller than
bCθc. By part (iii) of the induction hypothesis, these clauses are true in RbCθc, which
implies that bC′′θ ∨ t′θ 6≈ s′θ ∨ tθ ≈ t′θc is true in RbCθc. Since the literal bt′θ 6≈ s′θc
must be false in RbCθc, this implies that RbCθc |= bCθc, contradicting our assumption.

ut

Given a model R∞ of bGΣ(N)c, we construct a model R↑∞ of GΣ(N). The key prop-
erties are that R∞ is term-generated and that the interpretations of the members fk, . . . , fn
of a same symbol family behave in the same way.

Lemma 16 (Argument congruence). For all ground terms fm(s̄), gn(t̄), and u, if
Jfm(s̄)KξR∞

= Jgn(t̄)K
ξ
R∞

, then Jfm+1(s̄,u)KξR∞
= Jgn+1(t̄,u)K

ξ
R∞

.

Proof. What we want to show is equivalent to

R∞ |= fm(s̄)≈ gn(t̄) implies R∞ |= fm+1(s̄,u)≈ gn+1(t̄,u)

21

which is equivalent to

fm(s̄) ↓R∞
gn(t̄) implies fm+1(s̄,u)↔∗R∞

gn+1(t̄,u)

For every rewrite step rewriting a subterm, there is obviously an analogous rewrite step
if the term u is appended at the top level. Therefore, it suffices to prove that

hk(v̄)→ h′k′(v̄
′) ∈ R∞ implies hk+1(v̄,u)↔∗R∞

h′k′+1(v̄
′,u)

for all function symbols h,h′ and all k,k′.
Since hk(v̄)→ h′k′(v̄

′) ∈ R∞, it must come from a productive clause of the form
bCθc= bC′θc∨hk(v̄)≈ h′k′(v̄

′). Without loss of generality, we assume that the selected
literals in C ∈ N correspond to those in Cθ. We have an ARGCONG inference from Cθ
with the following ground instance:

C′θ ∨ dhk(v̄)≈ h′k′(v̄
′)e

ARGCONG
C′θ ∨ dhk(v̄,u)≈ h′k′(v̄

′,u)e ∨ u1 6≈ u1 ∨ ·· · ∨ ul 6≈ ul

(The additional literals u1 6≈ u1 ∨ ·· · ∨ ul 6≈ ul are due to purification. For the nonpurify-
ing variants, l = 0.) By the lifting lemma (Lemma 10), this is a ground instance of an in-
ference from C. By part (ii) of Lemma 15, a productive clause is never redundant; hence
Cθ is not redundant and therefore C is not redundant. Hence, the conclusion E of the
inference from C is in N ∪Red(N). Therefore, the ground instance bC′θc ∨ hk(v̄,u) ≈
h′k′(v̄

′,u) ∨ bu1 6≈ u1 ∨ ·· · ∨ ul 6≈ ulc of bEc is either contained in bGΣ(N)c or it is en-
tailed by clauses in bGΣ(N)c. Thus, it is true in R∞, because R∞ is a model of bGΣ(N)c.
By Lemma 7, bC′θc is false in R∞. The literals bu1 6≈ u1 ∨ ·· · ∨ ul 6≈ ulc are obviously
false. So, hk(v̄,u)≈ h′k′(v̄

′,u) must be true in R∞ and hk+1(v̄,u)↔∗R∞
h′k′+1(v̄

′,u). ut

Definition 17. Define an interpretation R↑∞ = (U↑,E↑,J ↑) in the ceiling logic as fol-
lows. Let (U,E ,J) = R∞. Let U↑τ = Ubτc and J ↑(f) = J (fk), where k is the number
of mandatory arguments of f. Since R∞ is term-generated, for every a ∈Ubτ→υc, there
exists a ground term s : τ→ υ such that JbscKξR∞

= a. Without loss of generality, we
write s = f(s̄k) sk+1 . . . sm. Then we have a = Jfm(bs̄mc)KξR∞

and define E↑ by

E↑τ,υ(a)(b) = J (fm+1)(Jbs̄mcKξR∞
,b) for all b ∈Uτ

It follows that E↑τ,υ(a)
(
JuKξR∞

)
= Jfm+1(bs̄mc,u)KξR∞

for any term u. This interpreta-
tion is well defined if the definition of E↑ does not depend on the choice of the ground
term s. To show this, we assume that there exists another ground term t = g(t̄l) tl+1 . . . tn
such that JbtcKξR∞

= a. By Lemma 16, it follows from JbscKξR∞
= JbtcKξR∞

that

Jfm+1(bs̄mc,u)KξR∞
= Jgn+1(bt̄nc,u)KξR∞

indicating that the definition of E↑ is independent of the choice of s.
Since R∞ is a term-generated model of bGΣ(N)c, we can show that R↑∞ is also term-

generated. And using the same argument as in the first-order proof, we can lift this result
to nonground clauses. For the extensional variants, we also need to show that R↑∞ is an
extensional interpretation.

22

Lemma 18 (Model transfer to ceiling logic). R↑∞ is a term-generated model of GΣ(N).

Proof. By Lemma 15, R∞ is a model of bGΣ(N)c, i.e., for all clauses bCc ∈ bGΣ(N)c
we have JbCcKξR∞

= 1.
We prove by induction on ground terms t and ground formulas ϕ of the ceiling

logic that JtKξR↑∞ = JbtcKξR∞
and JϕKξR↑∞ = JbϕcKξR∞

. It follows for all C ∈ GΣ(N) that
JCKξR↑∞ = JbCcKξR∞

= 1, and hence (U↑,E↑,J ↑) is a model of GΣ(N).
Let t be a ground ceiling term, and assume that JtKξR↑∞ = JbtcKξR∞

for all subterms
of t. If t is of the form f(t̄k), then

JtKξR↑∞ = J ↑(f)(Jt̄kK
ξ
R↑∞
)

= J (fk)(Jt̄kK
ξ
R↑∞
)

IH
= J (fk)(Jbt̄kcKξR∞

)

= Jfk(bt̄kc)KξR∞

= Jbf(t̄k)cKξR∞
= JbtcKξR∞

If t is an application t = t1 t2, where t1 is of type τ→ υ, then writing t1 as t1 =
f(s̄k) sk+1 . . . sm lets us derive

Jt1 t2K
ξ
R↑∞

= E↑τ,υ(Jt1K
ξ
R↑∞
)(Jt2K

ξ
R↑∞
)

IH
= E↑τ,υ(Jbt1cKξR∞

)(Jbt2cKξR∞
)

= E↑τ,υ(Jfm(bs̄mcKξR∞
)(Jbt2cKξR∞

)

Def E↑
= Jfm+1(bs̄mc,bt2c)KξR∞

= Jbt1 t2cKξR∞

So we have shown that JtKξR↑∞ = JbtcKξR∞
for all terms t. Given that, the induction on

formulas ϕ to show that JbϕcKξR↑∞ = JbϕcKξR∞
is trivial.

It remains to show that R↑∞ is term-generated. Let a ∈U↑τ . Since U↑τ = Ubτc and R∞

is term-generated, we have a ground term t of the floor logic with JtKξR∞
= a. Using what

we showed above, we have JbtcKξR↑∞ = JtKξR∞
= a. Hence, R↑∞ is term-generated. ut

Lemma 19 (Model transfer to nonground clauses). R↑∞ is a model of N.

Proof. Let (∀x.C) ∈ N. Then R↑∞ |= ∀x.C iff JCKξ[xi 7→ai]
R↑∞

= 1 for all ξ and ai. Choose
ground terms ti such that JtiK

ξ
R↑∞

= ai; define θ such that xiθ = ti, then JCKξ[xi 7→ai]
R↑∞

=
JCKξ◦θR↑∞

= JCθKξR↑∞ = 1 since Cθ ∈ GΣ(N) and R↑∞ |= GΣ(N) by Lemma 18. ut

Lemma 20 (Completeness of the extensionality axioms). If N contains the exten-
sionality axioms, R↑∞ is extensional.

Proof. Assume that the clause set N contains the extensionality axioms. By Lemma 19,
the extensionality axioms are hence true in R↑∞.

Assume that (U↑,E↑) is not extensional. Then E↑ is not injective, i.e., there are
a 6= b ∈U↑τ→υ, such that E↑(a) = E↑(b). Let ξ = {x 7→ a,y 7→ b}. Then

Jx (diff(x,y)) 6≈ y (diff(x,y))∨ x≈ yKξR↑∞ = 0

23

because

Jx (diff(x,y))KξR↑∞ = E↑(a)(Jdiff(x,y)KξR↑∞) = E↑(b)(Jdiff(x,y)KξR↑∞) = Jy (diff(x,y))KξR↑∞

but this is impossible since the extensionality axioms are true in R↑∞. ut

We summarize the results of this section in the following theorem.

Theorem 21 (Refutational completeness). Let N be a clause set that is saturated by
any of the four calculi, up to redundancy. For the purifying calculi, we additionally
assume that all clauses in N are purified. Then N has a model if and only if ⊥ /∈ N.
Such a model is extensional if N contains the extensionality axioms.

Proof. If ⊥ ∈ N, then obviously N does not have a model. If ⊥ /∈ N, then the interpre-
tation R∞ (that is, T /0

Σ
/R∞) is a model of bGΣ(N)c according to part (iii) of Lemma 15.

By Lemma 18, R↑∞ is a term-generated model of GΣ(N). By Lemma 19, it is a model
of N. If N contains the extensionality axioms, then R↑∞ is even an extensional model by
Lemma 20. ut

The dynamic view of the refutational completeness theorem holds as well. It can be
shown exactly as in Waldmann’s first-order proof [59].

5 Implementation

Zipperposition [20, 21] is an open source superposition-based theorem prover written
in OCaml.1 It was initially designed for polymorphic first-order logic with equality, as
embodied by TPTP TFF [12]. We will refer to this implementation as Zipperposition’s
first-order mode. Recently, we extended the prover with a pragmatic higher-order mode
with support for λ-abstractions and extensionality, without any completeness guaran-
tees. Using this mode, Zipperposition entered the 2017 edition of the CADE ATP Sys-
tem Competition [54]. We have now also implemented a complete λ-free higher-order
mode based on the four calculi described in this report, extended with polymorphism.

The pragmatic higher-order mode provided a convenient basis to implement our
calculi. It includes higher-order term and type representations and orders. Its ad hoc
calculus extensions are similar to our calculi. Notably, they include an ARGCONG rule
and a POSEXT-like rule, and SUP inferences are performed only at argument subterms.
In the term indexes, which are imperfect (overapproximating), terms whose heads are
applied variables and λ-abstractions are treated as fresh variables. This could be further
optimized to reduce the number of unification candidates. One of the bugs we found dur-
ing our implementation work occurred because argument positions shift when applying
substitutions to applied variables. We resolved this by numbering argument positions in
terms from right to left.

To implement the λ-free mode, we restricted the unification algorithm to non-λ-
terms, and we added support for mandatory arguments to make skolemization sound, by
associating the number of mandatory arguments to each symbol and incorporating this

1 https://github.com/c-cube/zipperposition

24

https://github.com/c-cube/zipperposition

number in the unification algorithm. To satisfy the requirements on selection, we avoid
selecting literals that contain higher-order variables. Finally, we disabled rewriting of
non-argument subterms to comply with our redundancy notion.

For the purifying calculi, we implemented purification as a simplification rule. This
ensures that it is applied aggressively on all clauses, whether initial clauses from the
problem or clauses produced during saturation, before any inferences are performed.

For the nonpurifying calculi, we added the possibility to perform SUP inferences at
variable positions. This means that variables must be indexed as well. In addition, we
modified the variable condition. However, it is in general impossible to decide whether
there exists a ground substitution θ with tσθ � t′σθ and Cσθ ≺C′′σθ. We overapprox-
imate the condition as follows: (1) check whether x appears with different arguments
in the clause C; (2) use an order-specific algorithm (for LPO and KBO) to determine
whether there might exist a ground substitution θ and terms ū such that tσθ � t′σθ and
tσθ ū ≺ t′σθ ū; and (3) check whether Cσ 6� C′′σ. If these three conditions apply, we
conclude that there might exist a ground substitution θ witnessing nonmonotonicity.

For the extensional calculi, we added a single extensionality axiom based on a poly-
morphic symbol diff : ∀αβ. (α→ β)2⇒ α. To curb the explosion associated with exten-
sionality, this axiom and all clauses derived from it are penalized by the clause selection
heuristic. We also added a negative extensionality rule that resembles Vampire’s exten-
sionality resolution rule [29].

Using Zipperposition, we can quantify the disadvantage of the applicative encoding
on the problem given at the end of Section 3.2. Well-chosen LPO and KBO instances
allow Zipperposition to derive ⊥ in 4 iterations of the prover’s main loop and 0.04 s.
KBO or LPO with default settings needs 203 iterations and 0.5 s, whereas KBO or LPO
on the applicatively encoded problem needs 203 iterations and almost 2 s due to the
larger terms.

6 Evaluation

We evaluated Zipperposition’s implementation of our four calculi on TPTP bench-
marks. We compare them with Zipperposition’s first-order mode on the applicative en-
coding with and without the extensionality axiom. The encoding is implemented as a
preprocessor, which makes all function symbols nullary and replaces all applications
with a binary app symbol. For simplicity, the encoder uses a single polymorphic app
symbol instead of a symbol family. Our experimental data is available online.2 We used
the developer version of Zipperposition, commit number 7fe2ebeb.3 Since the present
work is only a stepping stone towards a prover for full higher-order logic, it is too early
to compare this prototype to state-of-the-art higher-order provers that support a stronger
logic.

We instantiated all variants with LPO [13] (which is nonmonotonic) and KBO [5]
without argument coefficients (which is monotonic). This gives us a rough indication
of the cost of nonmonotonicity. However, when using a monotonic order, it may be

2 http://matryoshka.gforge.inria.fr/pubs/lfhosup_data/
3 https://github.com/c-cube/zipperposition/tree/7fe2ebeb

25

http://matryoshka.gforge.inria.fr/pubs/lfhosup_data/
https://github.com/c-cube/zipperposition/tree/7fe2ebeb

more efficient (and also refutationally complete) to superpose at non-argument subterms
directly instead of relying on the ARGCONG rule.

We collected 671 first-order problems in TPTP TFF format and 1114 higher-order
problems in TPTP THF format, both groups containing monomorphic and polymorphic
problems. We excluded all problems containing λ-expressions, the quantifier constants
!! (∀) and ?? (∃), arithmetic types, or the $distinct predicate, as well as problems that mix
Booleans and terms. Figures 1 and 2 summarize, for various configurations, the number
of solved satisfiable and unsatisfiable problems within 300 s (excluding the applicative
encoder). The average time and number of main loop iterations are computed over the
problems that all configurations for the respective logic and term order found to be
unsatisfiable within the timeout. The evaluation was carried out on StarExec [53] using
Intel Xeon E5-2609 0 CPUs clocked at 2.40 GHz.

Our approach targets large, mildly higher-order problems—a practically relevant
class of problems that is underrepresented in the TPTP library. The experimental results
confirm that our calculi handle first-order problems gracefully. Even the extensional
calculi, which include (graceless) extensionality axioms, are almost as effective as the
first-order mode. This indicates that our calculi will perform well on mildly higher-
order problems, too, where the proving effort is dominated by first-order reasoning.
In contrast, the applicative encoding is comparatively inefficient on problems that are
already first-order. For LPO, the success rate drops by 16%–18%; for both orders, the
average time to show unsatisfiability roughly quadruples.

Many of the higher-order problems in the TPTP library are satisfiable for our λ-free
logic, even though they may be unsatisfiable for full higher-order logic and labeled as
such in the TPTP. This is a reason why we postpone a comparison with state-of-the-art
higher-order provers until we have developed a prover for full higher-order logic. On
higher-order problems, the nonpurifying calculi outperform their purifying relatives.
The applicative encoding and the nonpurifying calculi are comparable on unsatisfiable
problems, which is probably indicative of the small size of the higher-order TPTP prob-
lems. The nonpurifying calculi saturate less often than the encoding, probably because
of the selection restrictions, but the encoding is much slower, probably due to the addi-
tional symbols in the encoding. This difference in speed is smaller for the intensional
calculi, a possible consequence of the argument congruence explosion. All in all, the
comparison of the applicative enconding and the nonpurifying calculiis not entirely
conclusive. In the light of the results of this evaluation, in future work, we would like to
collect benchmarks for large, mildly higher-order problems and to investigate whether
we can weaken the selection restrictions of our calculi.

The nonpurifying calculi perform slightly better with KBO than with LPO. This
confirms our expectations, given that KBO is generally considered the more robust
default option for superposition and that the nonmonotonic LPO triggers SUP inferences
at variable positions—which is the price to pay for the order’s nonmonotonicity.

7 Discussion and Related Work

Our calculi join a long list of extensions and refinements of superposition. Among the
most closely related is Peltier’s [45] Isabelle formalization of the refutational com-

26

sat # unsat � time (s) � iterations
LPO KBO LPO KBO LPO KBO LPO KBO

TFF first-order mode 0 0 181 220 4.0 4.4 1497 1473
applicative encoding 0 0 150 203 19.0 16.0 1698 1916
nonpurifying calculus 0 0 181 219 4.2 4.6 1497 1473
purifying calculus 0 0 181 218 4.3 4.8 1497 1473

THF applicative encoding 444 438 676 671 0.8 0.2 72 81
nonpurifying calculus 353 360 675 676 0.6 0.3 83 63
purifying calculus 338 343 664 666 0.8 1.0 116 231

Fig. 1: Evaluation of the intensional calculi

sat # unsat � time (s) � iterations
LPO KBO LPO KBO LPO KBO LPO KBO

TFF first-order mode 0 0 181 220 2.8 4.3 1219 1420
applicative encoding 0 0 151 201 19.0 17.6 1837 1792
nonpurifying calculus 0 0 179 215 6.2 6.8 1610 1524
purifying calculus 0 0 180 215 5.0 7.4 1291 1464

THF applicative encoding 426 421 677 671 0.7 0.8 78 89
nonpurifying calculus 310 327 669 675 0.6 0.4 83 66
purifying calculus 227 261 647 650 1.0 1.0 114 108

Fig. 2: Evaluation of the extensional calculi

pleteness of a superposition calculus that operates on λ-free higher-order terms and
that is parameterized by a monotonic term order. Extensions with polymorphism and
induction, independently developed by Cruanes [20, 21] and Wand [60], contribute to
increasing the power of automatic provers. Detection of inconsistencies in axioms, as
suggested by Schulz et al. [50], is important for large axiomatizations.

Also of interest is Bofill and Rubio’s [15] integration of nonmonotonic orders in
ordered paramodulation, a precursor of superposition. Their work is a veritable tour
de force, but it is also highly complicated and restricted to ordered paramodulation.
Lack of compatibility with arguments being a mild form of nonmonotonicity, it seemed
preferable to start with superposition, enrich it with an ARGCONG rule, and tune the
side conditions until we obtained a complete calculus.

Most complications can be avoided by using a monotonic order such as KBO with-
out argument coefficients, but we suspect that the coefficients will play an important role
to support λ-abstractions. For example, the term λx. x+ x could be treated as a constant
with a coefficient of 2 on its argument and a heavy weight to ensure (λx. x+ x) y� y+y.
LPO can also be used to good effect. This technique could allow provers to perform ag-
gressive β-reduction in the vast majority of cases, without compromising completeness.

Many researchers have proposed or used encodings of higher-order logic constructs
into first-order logic, including Robinson [47], Kerber [34], Dougherty [24], Dowek et

27

al. [25], Hurd [33], Meng and Paulson [39], Obermeyer [44], and Czajka [22]. Encod-
ings of types, such as those by Bobot and Paskevich [14] and Blanchette et al. [10], are
also crucial to obtain a sound encoding of higher-order logic. These ideas are imple-
mented in proof assistant tools such as HOLyHammer and Sledgehammer [11].

In the term rewriting community, λ-free higher-order logic is known as applicative
first-order logic. First-order rewrite techniques can be applied to this logic via the ap-
plicative encoding. However, app being the only function symbol in this encoding has
similar drawbacks as in theorem proving. Hirokawa et al. [31] propose a technique that
resembles our b c mapping to avoid those drawbacks.

Another line of research has focused on the development of automated proof pro-
cedures for higher-order logic. Robinson’s [46], Andrews’s [1], and Huet’s [32] pio-
neering work stands out. Andrews [2] and Benzmüller and Miller [7] provide excellent
surveys. The competitive higher-order automatic theorem provers include LEO-II [8]
(based on unordered paramodulation), Satallax [17] (based on a tableau calculus and a
SAT solver), AgsyHOL [38] (based on a focused sequent calculus and a generic narrow-
ing engine), and Leo-III [52] (based on a pragmatic extension of superposition with no
completeness guarantees). The Isabelle proof assistant [43] (which includes a tableau
reasoner and a rewriting engine) and its Sledgehammer subsystem also participate in
the higher-order division of the CADE ATP System Competition [54].

Zipperposition is a convenient vehicle for experimenting and prototyping because
it is easier to understand and modify than highly-optimized C or C++ provers. Our
middle-term goal is to design higher-order superposition calculi, implement them in
state-of-the-art provers such as E [49], SPASS [61], and Vampire [36], and integrate
these in proof assistants to provide a high level of automation. With its stratified archi-
tecture, Otter-λ [6] is perhaps the closest to what we are aiming at, but it is limited to
second-order logic and offers no completeness guarantees. In preliminary work super-
vised by Blanchette and Schulz, Vukmirović [57] has generalized E’s data structures
and algorithms to λ-free higher-order logic, assuming a monotonic KBO [5].

8 Conclusion

We presented four superposition calculi for intensional and extensional λ-free higher-
order logic and proved them refutationally complete. The calculi nicely generalize stan-
dard superposition and are compatible with our λ-free higher-order LPO and KBO. Our
experiments partly confirm what one would naturally expect: that native support for
partial application and applied variables outperforms the applicative encoding.

The new calculi reduce the gap between proof assistants based on higher-order logic
and superposition provers. We can use them to reason about arbitrary higher-order prob-
lems by axiomatizing suitable combinators. But perhaps more importantly, they appear
promising as a stepping stone towards complete, highly efficient automatic theorem
provers for full higher-order logic.

Acknowledgment. We are grateful to the maintainers of StarExec for letting us use their service.
We want to thank Christoph Benzmüller, Sander Dahmen, Johannes Hölzl, Anders Schlichtkrull,
Stephan Schulz, Alexander Steen, Geoff Sutcliffe, Andrei Voronkov, Petar Vukmirović, Daniel

28

Wand, Christoph Weidenbach, and the participants in the 2017 Dagstuhl Seminar on Deduction
beyond First-Order Logic for stimulating discussions. We also want to thank Mark Summer-
field, Sophie Tourret, and the anonymous reviewers for suggesting several textual improvements.
Bentkamp and Blanchette’s research has received funding from the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and innovation program (grant
agreement No. 713999, Matryoshka).

References

[1] Andrews, P.B.: Resolution in type theory. J. Symb. Log. 36(3), 414–432 (1971)
[2] Andrews, P.B.: Classical type theory. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of

Automated Reasoning, vol. II, pp. 965–1007. Elsevier and MIT Press (2001)
[3] Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and

simplification. J. Log. Comput. 4(3), 217–247 (1994)
[4] Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, J.A., Voronkov,

A. (eds.) Handbook of Automated Reasoning, vol. I, pp. 19–99. Elsevier and MIT Press
(2001)

[5] Becker, H., Blanchette, J.C., Waldmann, U., Wand, D.: A transfinite Knuth–Bendix order
for lambda-free higher-order terms. In: de Moura, L. (ed.) CADE-26. LNCS, vol. 10395,
pp. 432–453. Springer (2017)

[6] Beeson, M.: Lambda logic. In: Basin, D.A., Rusinowitch, M. (eds.) IJCAR 2004. LNCS,
vol. 3097, pp. 460–474. Springer (2004)

[7] Benzmüller, C., Miller, D.: Automation of higher-order logic. In: Siekmann, J.H. (ed.)
Computational Logic, Handbook of the History of Logic, vol. 9, pp. 215–254. Elsevier
(2014)

[8] Benzmüller, C., Paulson, L.C., Theiss, F., Fietzke, A.: LEO-II—A cooperative automatic
theorem prover for higher-order logic. In: Armando, A., Baumgartner, P., Dowek, G. (eds.)
IJCAR 2008. LNCS, vol. 5195, pp. 162–170. Springer (2008)

[9] Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development: Coq’Art:
The Calculus of Inductive Constructions. Texts in Theoretical Computer Science, Springer
(2004)

[10] Blanchette, J.C., Böhme, S., Popescu, A., Smallbone, N.: Encoding monomorphic and
polymorphic types. Log. Meth. Comput. Sci. 12(4:13), 1–52 (2016)

[11] Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED. J. For-
maliz. Reas. 9(1), 101–148 (2016)

[12] Blanchette, J.C., Paskevich, A.: TFF1: The TPTP typed first-order form with rank-1 poly-
morphism. In: Bonacina, M.P. (ed.) CADE-24. LNCS, vol. 7898, pp. 414–420. Springer
(2013)

[13] Blanchette, J.C., Waldmann, U., Wand, D.: A lambda-free higher-order recursive path or-
der. In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 461–479.
Springer (2017)

[14] Bobot, F., Paskevich, A.: Expressing polymorphic types in a many-sorted language. In:
Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS, vol. 6989, pp. 87–102.
Springer (2011)

[15] Bofill, M., Rubio, A.: Paramodulation with non-monotonic orderings and simplification. J.
Autom. Reason. 50(1), 51–98 (2013)

[16] Brand, D.: Proving theorems with the modification method. SIAM J. Comput. 4, 412–430
(1975)

[17] Brown, C.E.: Satallax: An automatic higher-order prover. In: Gramlich, B., Miller, D., Sat-
tler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 111–117. Springer (2012)

29

[18] Cervesato, I., Pfenning, F.: A linear spine calculus. J. Log. Comput. 13(5), 639–688 (2003)
[19] Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5(2), 56–68 (1940)
[20] Cruanes, S.: Extending Superposition with Integer Arithmetic, Structural Induction, and

Beyond. Ph.D. thesis, École polytechnique (2015)
[21] Cruanes, S.: Superposition with structural induction. In: Dixon, C., Finger, M. (eds.) Fro-

CoS 2017. LNCS, vol. 10483, pp. 172–188. Springer (2017)
[22] Czajka, Ł.: Improving automation in interactive theorem provers by efficient encoding of

lambda-abstractions. In: Avigad, J., Chlipala, A. (eds.) CPP 2016. pp. 49–57. ACM (2016)
[23] Digricoli, V.J., Harrison, M.C.: Equality-based binary resolution. J. ACM 33(2), 253–289

(1986)
[24] Dougherty, D.J.: Higher-order unification via combinators. Theor. Comput. Sci. 114(2),

273–298 (1993)
[25] Dowek, G., Hardin, T., Kirchner, C.: Higher-order unification via explicit substitutions (ex-

tended abstract). In: LICS ’95. pp. 366–374. IEEE (1995)
[26] Enderton, H.B.: Second-order and higher-order logic. In: Zalta, E.N. (ed.) The Stanford

Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, fall 2015
edn. (2015)

[27] Fitting, M.: Types, Tableaus, and Gödel’s God. Kluwer (2002)
[28] Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem Proving Environ-

ment for Higher Order Logic. Cambridge University Press (1993)
[29] Gupta, A., Kovács, L., Kragl, B., Voronkov, A.: Extensional crisis and proving identity. In:

Cassez, F., Raskin, J. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 185–200. Springer (2014)
[30] Henkin, L.: Completeness in the theory of types. J. Symb. Log. 15(2), 81–91 (1950)
[31] Hirokawa, N., Middeldorp, A., Zankl, H.: Uncurrying for termination and complexity. J.

Autom. Reasoning 50(3), 279–315 (2013)
[32] Huet, G.P.: A mechanization of type theory. In: Nilsson, N.J. (ed.) IJCAI-73. pp. 139–146.

William Kaufmann (1973)
[33] Hurd, J.: First-order proof tactics in higher-order logic theorem provers. In: Archer, M.,

Di Vito, B., Muñoz, C. (eds.) Design and Application of Strategies/Tactics in Higher Order
Logics. pp. 56–68. NASA Technical Reports (2003)

[34] Kerber, M.: How to prove higher order theorems in first order logic. In: Mylopoulos, J.,
Reiter, R. (eds.) IJCAI-91. pp. 137–142. Morgan Kaufmann (1991)

[35] Kop, C.: Higher Order Termination: Automatable Techniques for Proving Termination of
Higher-Order Term Rewriting Systems. Ph.D. thesis, Vrije Universiteit Amsterdam (2012)

[36] Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina, N.,
Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer (2013)

[37] Leivant, D.: Higher order logic. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A., Siekmann,
J.H. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, Volume
2, Deduction Methodologies, pp. 229–322. Oxford University Press (1994)

[38] Lindblad, F.: A focused sequent calculus for higher-order logic. In: Demri, S., Kapur, D.,
Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 61–75. Springer (2014)

[39] Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses. J. Autom.
Reason. 40(1), 35–60 (2008)

[40] Miller, D.A.: A compact representation of proofs. Studia Logica 46(4), 347–370 (1987)
[41] Nieuwenhuis, R., Rubio, A.: Basic superposition is complete. In: Krieg-Brückner, B. (ed.)

ESOP ’92. LNCS, vol. 582, pp. 371–389. Springer (1992)
[42] Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, J.A.,

Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, pp. 371–443. Elsevier and
MIT Press (2001)

[43] Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order
Logic, LNCS, vol. 2283. Springer (2002)

30

[44] Obermeyer, F.H.: Automated Equational Reasoning in Nondeterministic λ-Calculi Modulo
Theories H ∗. Ph.D. thesis, Carnegie Mellon University (2009)

[45] Peltier, N.: A variant of the superposition calculus. Archive of Formal Proofs (2016),
https://www.isa-afp.org/entries/SuperCalc.shtml

[46] Robinson, J.: Mechanizing higher order logic. In: Meltzer, B., Michie, D. (eds.) Machine
Intelligence, vol. 4, pp. 151–170. Edinburgh University Press (1969)

[47] Robinson, J.: A note on mechanizing higher order logic. In: Meltzer, B., Michie, D. (eds.)
Machine Intelligence, vol. 5, pp. 121–135. Edinburgh University Press (1970)

[48] Schmidt-Schauß, M.: Unification in a combination of arbitrary disjoint equational theories.
J. Symb. Comput. 8, 51–99 (1989)

[49] Schulz, S.: System description: E 1.8. In: McMillan, K.L., Middeldorp, A., Voronkov, A.
(eds.) LPAR-19. LNCS, vol. 8312, pp. 735–743. Springer (2013)

[50] Schulz, S., Sutcliffe, G., Urban, J., Pease, A.: Detecting inconsistencies in large first-
order knowledge bases. In: de Moura, L. (ed.) CADE-26. LNCS, vol. 10395, pp. 310–325.
Springer (2017)

[51] Snyder, W., Lynch, C.: Goal directed strategies for paramodulation. In: Book, R.V. (ed.)
RTA-91. LNCS, vol. 488, pp. 150–161. Springer (1991)

[52] Steen, A., Benzmüller, C.: The higher-order prover Leo-III. In: Galmiche, D., Schulz, S.,
Sebastiani, R. (eds.) IJCAR 2018. LNCS, Springer (2018)

[53] Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: A cross-community infrastructure for logic
solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562,
pp. 367–373. Springer (2014)

[54] Sutcliffe, G.: The CADE-26 automated theorem proving system competition—CASC-26.
AI Commun. 30(6), 419–432 (2017)

[55] Sutcliffe, G., Benzmüller, C., Brown, C.E., Theiss, F.: Progress in the development of au-
tomated theorem proving for higher-order logic. In: Schmidt, R.A. (ed.) CADE-22. LNCS,
vol. 5663, pp. 116–130. Springer (2009)

[56] Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP typed first-order form
with arithmetic. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18. LNCS, vol. 7180, pp. 406–
419. Springer (2012)

[57] Vukmirović, P.: Implementation of Lambda-Free Higher-Order Superposition. M.Sc. the-
sis, Vrije Universiteit Amsterdam (2018)

[58] Waldmann, U.: Automated reasoning I. Lecture notes, Max-Planck-Institut für In-
formatik (2015), http://resources.mpi-inf.mpg.de/departments/rg1/teaching/

autrea-ws15/script.pdf

[59] Waldmann, U.: Automated reasoning II. Lecture notes, Max-Planck-Institut für
Informatik (2016), http://resources.mpi-inf.mpg.de/departments/rg1/teaching/
autrea2-ss16/script-current.pdf

[60] Wand, D.: Superposition: Types and Polymorphism. Ph.D. thesis, Universität des Saarlan-
des (2017)

[61] Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS
version 3.5. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 140–145. Springer
(2009)

31

https://www.isa-afp.org/entries/SuperCalc.shtml
http://resources.mpi-inf.mpg.de/departments/rg1/teaching/autrea-ws15/script.pdf
http://resources.mpi-inf.mpg.de/departments/rg1/teaching/autrea-ws15/script.pdf
http://resources.mpi-inf.mpg.de/departments/rg1/teaching/autrea2-ss16/script-current.pdf
http://resources.mpi-inf.mpg.de/departments/rg1/teaching/autrea2-ss16/script-current.pdf

	Superposition for Lambda-Free Higher-Order Logic (Technical Report)
	1 Introduction
	2 Logic
	3 The Inference Systems
	3.1 The Inference Rules
	3.2 Rationale for the Inference Rules
	3.3 Redundancy Criterion
	3.4 Skolemization

	4 Refutational Completeness
	4.1 Candidate Interpretation
	4.2 Lifting Lemmas
	4.3 Main Result

	5 Implementation
	6 Evaluation
	7 Discussion and Related Work
	8 Conclusion

