
Extending a Brainiac Prover to
Lambda-Free Higher-Order Logic

(Technical Report)

Petar Vukmirović1(�), Jasmin Christian Blanchette1,2,
Simon Cruanes3, and Stephan Schulz4

1 Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
p.vukmirovic@vu.nl

2 Max-Planck-Institut für Informatik, Saarland Informatics Campus,
Saarbrücken, Germany

3 Aesthetic Integration, Austin, Texas, USA
4 DHBW Stuttgart, Stuttgart, Germany

Abstract. Decades of work have gone into developing efficient proof
calculi, data structures, algorithms, and heuristics for first-order automatic
theorem proving. Higher-order provers lag behind in terms of efficiency.
Instead of developing a new higher-order prover from the ground up, we
propose to start with the state-of-the-art superposition-based prover E
and gradually enrich it with higher-order features. We explain how to
extend the prover’s data structures, algorithms, and heuristics to λ-free
higher-order logic, a formalism that supports partial application and
applied variables. Our extension outperforms the traditional encoding
and appears promising as a stepping stone towards full higher-order logic.

1 Introduction

Superposition-based provers, such as E [42], SPASS [52], and Vampire [26], are
among the most successful first-order reasoning systems. They serve as backends
in various frameworks, including software verifiers (Why3 [22]), automatic higher-
order theorem provers (Leo-III [44], Satallax [16]), and one-click “hammers” in
proof assistants (HOLyHammer for HOL Light [24], Sledgehammer for Isabelle
[34]). Decades of research have gone into refining calculi, devising efficient data
structures and algorithms, and developing heuristics to guide proof search [43].
This work has mostly focused on first-order logic with equality, with or without
arithmetic [21,25,36].

Research on higher-order automatic provers has resulted in systems such as
LEO [9], Leo-II [11], and Leo-III [44], based on resolution and paramodulation,
and Satallax [16], based on analytic tableaux and SAT solving. These provers
feature a “cooperative” architecture, pioneered by LEO: They are full-fledged
higher-order provers that regularly invoke an external first-order prover with a
low time limit as a terminal procedure, in an attempt to finish the proof quickly
using only first-order reasoning. However, the first-order backend will succeed

only if all the necessary higher-order reasoning has been performed, meaning that
much of the first-order reasoning is carried out by the slower higher-order prover.
As a result, this architecture leads to suboptimal performance on first-order
problems and on problems with a large first-order component, such as those that
often arise in interactive verification [46]. For example, at the 2017 installment
of the CADE ATP System Competition (CASC) [49], Leo-III, using E as one
of its backends, proved 652 out of 2000 first-order problems in the Sledgehammer
division, compared with 1185 for E on its own and 1433 for Vampire.

To obtain better performance, we propose to start with a competitive first-
order prover and extend it to full higher-order logic one feature at a time. Our
goal is a graceful extension, so that the system behaves as before on first-order
problems, performs mostly like a first-order prover on typical, mildly higher-order
problems, and scales up to arbitrary higher-order problems, in keeping with the
zero-overhead principle:What you don’t use, you don’t pay for.

As a stepping stone towards full higher-order logic, we initially restrict our
focus to a higher-order logic without λ-expressions (Sect. 2). Compared with
first-order logic, its distinguishing features are partial application and applied
variables. This formalism is rich enough to express the recursive equations of
higher-order combinators, such as the map operation on finite lists:

map f nil ≈ nil map f (cons x xs) ≈ cons (f x) (map f xs)

Our vehicle is E [39,42], a prover developed primarily by Schulz. It is written
in C and offers good performance, with the emphasis on “brainiac” heuristics
rather than raw speed. E regularly scores among the top systems at CASC, and
usually is the strongest open source1 prover in the relevant divisions. It also serves
as a backend for competitive higher-order provers. We refer to our extended
version of E as Ehoh. It corresponds to E version 2.3 configured with the option
–enable-ho. A prototype of Ehoh is described in Vukmirović’s MSc thesis [51].

The three main challenges are generalizing the type and term representation
(Sect. 3), the unification and matching algorithms (Sect. 4), and the indexing data
structures (Sect. 5). We also adapted the inference rules (Sect. 6), the heuristics
(Sect. 7), and the preprocessor (Sect. 8).

A novel aspect of our work is prefix optimization. Higher-order terms contain
twice as many proper subterms as first-order terms; for example, the term f (g a) b
contains not only the argument subterms g a, a, b but also the “prefix” subterms
f, f (g a), g. Many operations, including superposition and rewriting, require
traversing all subterms of a term. Using prefix optimization, the prover traverses
subterms recursively in a first-order fashion, considering all the prefixes of the
current subterm together, at no significant additional cost. Our experiments
(Sect. 9) show that Ehoh is effectively as fast as E on first-order problems and
can also prove higher-order problems that do not require synthesizing λ-terms.
As a next step, we plan to add support for λ-terms and higher-order unification.

1 http://wwwlehre.dhbw-stuttgart.de/~sschulz/WORK/E_DOWNLOAD/V_2.3/

2

http://wwwlehre.dhbw-stuttgart.de/~sschulz/WORK/E_DOWNLOAD/V_2.3/

2 Logic

Our logic corresponds to the intensional λ-free higher-order logic (λfHOL) de-
scribed by Bentkamp, Blanchette, Cruanes, and Waldmann [8, Sect. 2]. Another
possible name for this logic would be “applicative first-order logic.” Extensionality
can be obtained by adding suitable axioms [8, Sect. 3.1].

A type is either an atomic type ι or a function type τ → υ, where τ and υ are
themselves types. Terms, ranged over by s, t, u, v, are either variables x, y, z, . . . ,
(function) symbols a, b, c, d, f, g, . . . (often called “constants” in the higher-order
literature), or binary applications of the form s t. Application associates to the
left, whereas → associates to the right. The typing rules are as for the simply
typed λ-calculus: If s has type τ → υ and t has type τ , then s t has type υ. A
term’s arity is the number of extra arguments it can take; thus, if f has type
ι→ ι→ ι and a has type ι, then f is binary, f a is unary, and f a a is nullary.

Terms have a unique “flattened” decomposition of the form ζ s1 . . . sm, where
ζ, the head, is a variable x or symbol f, and s1, . . . , sm, the arguments, are
arbitrary terms. We abbreviate tuples (a1, . . . , am) to am or a; abusing notation,
we write ζ sm for the curried application ζ s1 . . . sm.

An equation s ≈ t corresponds to an unordered pair of terms. A literal L
is an equation s ≈ t, where s and t must have the same type, or its negation,
written s 6≈ t. Predicate symbols are encoded as terms of a distinguished Boolean
type; for example, even(n) is encoded as even(n) ≈ true. Clauses C,D are finite
multisets of literals, interpreted disjunctively: L1 ∨ · · · ∨Ln. E and Ehoh clausify
the input as a preprocessing step.

Substitutions σ are partial functions of finite domain from variables to terms,
written {x1 7→ s1, . . . , xm 7→ sm}, where each xi has the same type as si. The
notation σ[x 7→ s] represents the substitution that maps x to s and that otherwise
coincides with σ. Applying a substitution σ to a variable beyond σ’s domain is
the identity. Applying a substitution to a term t applies it homomorphically to
t’s variables. Composition (σ ◦ σ′)(t) is defined as σ(σ′(t)).

A well-known technique to support λfHOL using first-order reasoning systems
is to employ the applicative encoding. Following this scheme, every n-ary symbol
is converted to a nullary symbol, and application is represented by a distinguished
binary symbol @. For example, the λfHOL term f (x a) b is encoded as the
first-order term @(@(f,@(x, a)), b). However, this representation is not graceful; it
clutters data structures and impacts proof search in subtle ways, leading to poorer
performance, especially on large benchmarks. In our empirical evaluation, we
find that for some prover modes, the applicative encoding incurs a 15% decrease
in success rate (Sect. 9). For these and further reasons (Sect. 10), it is not an
ideal basis for higher-order reasoning.

3 Types and Terms

The term representation is a fundamental question when building a theorem
prover. Delicate changes to E’s term representation were needed to support

3

partial application and especially applied variables. In contrast, the introduction
of a higher-order type system had a less dramatic impact on the prover’s code.

3.1 Types

For most of its history, E supported only untyped first-order logic. Cruanes
implemented support for atomic types for E 2.0 [17, p. 117]. Symbols f are declared
with a type signature: f : τ1 × · · · × τm → τ. Atomic types are represented by
integers in memory, leading to efficient type comparisons.

In λfHOL, a type signature consists of types τ , in which the function type
constructor → can be nested—e.g., (ι→ ι)→ ι→ ι. A natural way to represent
such types is to mimic their recursive structures using tagged unions. However,
this leads to memory fragmentation, and a simple operation such as querying the
type of a function’s ith argument would require dereferencing i pointers. We prefer
a flattened representation, in which a type τ1 → · · · → τn → ι is represented by
a single node labeled with → and pointing to the array (τ1, . . . , τn, ι). Applying
k ≤ n arguments to a function of the above type yields a term of type τk+1 →
· · · → τn → ι. In memory, this corresponds to skipping the first k array elements.

To speed up type comparisons, Ehoh stores all types in a shared bank and
implements perfect sharing, ensuring that types that are structurally the same
are represented by the same object in memory. Type equality can then be
implemented as a pointer comparison, which is as efficient as E’s previous integer
comparison.

Since higher-order types are structurally similar to first-order terms, it would
have been possible to reuse E’s term data structure to store types. We experi-
mented with this design choice but quickly abandoned the idea. E’s term module
relies on a signature module to provide function code to function name mapping.
For each symbol, the signature stores its type. If types are represented as terms,
the signature module would depend on the term module, creating a cycle. There
are workarounds to make such dependencies acceptable to the C compiler, but
they are inelegant and would compromise the integrity of E’s source code.

3.2 Terms

In E, terms are represented as perfectly shared directed acyclic graphs [29]. Each
node, or cell, contains 11 fields, including f_code, an integer that identifies the
term’s head symbol (if ≥ 0) or variable (if < 0); arity, an integer corresponding
to the number of arguments passed to the head symbol; args, an array of size
arity consisting of pointers to argument terms; and binding, which possibly
stores a substitution for a variable (if f_code < 0) used for unification and
matching.

In first-order logic, the arity of variables is always 0, and the arity of a symbol
f is given by its type signature. In higher-order logic, variables may have function
type and be applied, and symbols can be applied to fewer arguments than specified
by their type signatures. A natural representation of λfHOL terms as tagged
unions would distinguish between variables x, symbols f, and binary applications

4

s t. However, this scheme suffers from memory fragmentation and linear-time
access, as with the representation of types, affecting performance on purely or
mostly first-order problems. Instead, we propose a flattened representation, as
a generalization of E’s existing data structures: Allow arguments to variables,
and for symbols let arity be the number of actual arguments, as opposed to
the declared arity, and rename the field num_args. This approach parallels our
representation of types.

A side effect of the flattened representation is that prefix subterms are not
shared. For example, the terms f a and f a b correspond to the flattened cells
f(a) and f(a, b). The argument subterm a is shared, but not the prefix f a.
Similarly, x and x b are represented by two distinct cells, x() and x(b), and there
is no connection between the two occurrences of x. In particular, despite perfect
sharing, their binding fields are unconnected, leading to inconsistencies.

A potential solution would be to systematically traverse a clause and set the
binding fields of all cells of the form x(s) whenever a variable x is bound, but this
would be inefficient and inelegant. Instead, we implemented a hybrid approach:
Variables are applied by an explicit application operator @, to ensure that they
are always perfectly shared. Thus, x b c is represented by the cell @(x, b, c), where
x is a shared subcell. This complicates the representation somewhat (and led to
subtle bugs during development), but it is graceful, since variables never occur
applied in first-order terms. The main drawback of this technique is that some
normalization is necessary after substitution: Whenever a variable is instantiated
by a term with a symbol head, the @ symbol must be eliminated. Applying the
substitution {x 7→ f a} to the cell @(x, b, c) must produce the cell f(a, b, c) and
not @(f(a), b, c), for consistency with other occurrences of f a b c.

There is one more complication related to the binding field. In E, it is easy
and useful to traverse a term as if a substitution has been applied, by following
all set binding fields. In Ehoh, this is not enough, because cells must also be
normalized. To avoid repeatedly creating the same normalized cells, we introduced
a binding_cache field that connects a @(x, s) cell with its substitution. However,
this cache can easily become stale when the binding pointer is updated. To
detect this situation, we store x’s binding value in the @(x, s) cell’s binding
field (which is otherwise unused). To find out whether the cache is valid, it suffices
to check that the binding fields of x and @(x, s) are equal.

3.3 Term Orders

Superposition provers rely on term orders to prune the search space. To ensure
completeness of the underlying calculus, the order must be a simplification order
that can be extended to a simplification order that is total on variable-free terms.
The Knuth–Bendix order (KBO) and the lexicographic path order (LPO) meet
this criterion. KBO is generally regarded as the more robust and efficient option
for superposition, but LPO can be used to prove some problems more quickly. E
implements both. In earlier work, Blanchette and colleagues have shown that only
KBO can be generalized gracefully while preserving all the necessary properties
for superposition [6, 14]. For this reason, we focus on KBO.

5

E implements the linear-time algorithm for KBO described by Löchner [28],
which relies on the tupling method to store intermediate results, avoiding repeated
computations. It is straightforward to generalize the algorithm to compute the
graceful λfHOL version of KBO [6]. The main difference is that when comparing
two terms f sm and f tn, because of partial application we may now have m 6= n;
this required changing the implementation to perform a length-lexicographic
comparison of the tuples sm and tn.

4 Unification and Matching

Syntactic unification of λfHOL terms has a definite first-order flavor. It is de-
cidable, and most general unifiers (MGUs) are unique up to variable renaming.
For example, the unification constraint f (y a)

?
= y (f a) has the MGU {y 7→ f},

whereas in full higher-order logic it would admit infinitely many independent
solutions of the form {y 7→ λx. f (f (· · · (f x) · · ·))}. Matching is a special case of
unification where only the variables on the left-hand side can be instantiated.

An easy but inefficient way to implement unification and matching for λfHOL
is to apply the applicative encoding (Sect. 1), perform first-order unification
or matching, and decode the resulting substitution. However, the applicative
encoding introduces an undesirable overhead. Instead, we propose to generalize
the first-order unification and matching procedures to operate directly on λfHOL
terms.

4.1 Unification

We present our unification procedure as a nondeterministic transition system,
generalizing Baader and Nipkow [4]. A unification problem consists of a finite
set S of unification constraints si

?
= ti, where si and ti are of the same type.

A problem is in solved form if it has the form {x1 ?
= t1, . . . , xn

?
= tn}, where

the xi’s are distinct and do not occur in the tj ’s. The corresponding unifier
is {x1 7→ t1, . . . , xn 7→ tn}. The transition rules attempt to bring the input
constraints into solved form. They can be applied in any order and eventually
reach a normal form, which is either an idempotent MGU expressed in solved
form or the special value ⊥, denoting unsatisfiability of the constraints.

The first group of rules—the positive rules—consists of operations that focus
on a single constraint and replace it with a new (possibly empty) set of constraints:

Delete {t ?
= t}] S =⇒ S

Decompose {f sm ?
= f tm}] S =⇒ S ∪ {s1 ?

= t1, . . . , sm
?
= tm}

DecomposeX {x sm ?
= u tm}] S =⇒ S ∪ {x ?

= u, s1
?
= t1, . . . , sm

?
= tm}

if x and u have the same type and m > 0

Orient {f s ?
= x t}] S =⇒ S ∪ {x t ?

= f s}
OrientXY {x sm ?

= y tn}] S =⇒ S ∪ {y tn ?
= x sm} if m > n

Eliminate {x ?
= t}] S =⇒ {x ?

= t} ∪ {x 7→ t}(S) if x ∈ Var(S) \ Var(t)

6

The Delete, Decompose, and Eliminate rules are essentially as for first-order terms.
The Orient rule is generalized to allow applied variables and complemented by
a new OrientXY rule. DecomposeX, also a new rule, can be seen as a variant of
Decompose that analyzes applied variables; the term u may be an application.

The rules belonging to the second group—the negative rules—detect unsolv-
able constraints:

Clash {f s ?
= g t}] S =⇒ ⊥ if f 6= g

ClashTypeX {x sm ?
= u tm}] S =⇒ ⊥ if x and u have different types

ClashLenXF {x sm ?
= f tn}] S =⇒ ⊥ if m > n

OccursCheck {x ?
= t}] S =⇒ ⊥ if x ∈ Var(t) and x 6= t

The Clash and OccursCheck rules are essentially as in Baader and Nipkow. The
ClashTypeX and ClashLenXF rules are variants of Clash for applied variables.

The derivations below demonstrate the computation of MGUs for the unifica-
tion problems {f (y a) ?

= y (f a)} and {x (z b c)
?
= g a (y c)}:

{f (y a) ?
= y (f a)} {x (z b c)

?
= g a (y c)}

=⇒Orient {y (f a) ?
= f (y a)} =⇒DecomposeX {x ?

= g a, z b c
?
= y c}

=⇒DecomposeX {y ?
= f, f a

?
= y a} =⇒OrientXY {x ?

= g a, y c
?
= z b c}

=⇒Eliminate {y ?
= f, f a

?
= f a} =⇒DecomposeX {x ?

= g a, y
?
= z b, c

?
= c}

=⇒Delete {y ?
= f} =⇒Delete {x ?

= g a, y
?
= z b}

E stores open constraints in a double-ended queue. Constraints are processed
from the front. New constraints are added at the front if they involve complex
terms that can be dealt with swiftly by Decompose or Clash, or to the back if one
side is a variable. This delays instantiation of variables (with a possible increase
in term size) and allows E to detect structural clashes early.

During proof search, E repeatedly needs to test a term s for unifiability not
only with some other term t but also with t’s subterms. Prefix optimization
speeds up this test: The subterms of t are traversed in a first-order fashion; for
each such subterm ζ tn, at most one prefix ζ tk, with k ≤ n, is possibly unifiable
with s, by virtue of their having the same arity. For first-order problems, we can
only have k = n, since all functions are fully applied. Using this technique, Ehoh
is virtually as efficient as E on first-order terms.

The transition system introduced above always terminates with a correct
answer. Our proofs follow the lines of Baader and Nipkow.

In the following, the metavariable R is used to range over constraint sets S
and the special value ⊥. The set of all unifiers of S is denoted by U(S). Note
that U(S ∪ S′) = U(S) ∩ U(S′). By convention, we let U(⊥) = ∅. The notation
S =⇒! S′ indicates that S =⇒∗ S′ and S′ is a normal form (i.e., there exists no
S′′ such that S′ =⇒ S′′). A variable x is solved in S if it occurs exactly once in
S, in a constraint of the form x

?
= t.

Lemma 1. If S =⇒ R, then U(S) = U(R).

7

Proof. The rules Delete, Decompose, Orient, and Eliminate are essentially as in
Baader and Nipkow. The same arguments carry over to λfHOL. OrientXY trivially
preserves unifiers. For DecomposeX, the core of the argument is as follows:

σ ∈ U({x sm ?
= u tm})

iff σ(x sm) = σ(u tm)

iff σ(x) σ(s1) . . . σ(sm) = σ(u) σ(t1) . . . σ(tm)

iff σ(x) = σ(u), σ(s1) = σ(t1), . . . , and σ(sm) = σ(tm)

iff σ ∈ U({x ?
= u, s1

?
= t1, . . . , sm

?
= tm})

The proof of the problem’s unsolvability if Clash or OccursCheck are applicable
carries over from Baader and Nipkow. For ClashTypeX, the argument is that
σ(x sm) = σ(u tm) is possible only if σ(x) = σ(u), which requires x and u to be
of the same type. Similarly, for ClashLenXF, if σ(x sm) = σ(f tn) with m > n, we
must have σ(x sm−n) = σ(x) σ(s1) . . . σ(sm−n) = f, which is impossible. ut

Lemma 2. If S is a normal form, then S is in solved form.

Proof. Consider an arbitrary unification constraint s ?
= t ∈ S. We show that in

all but one cases, a rule is applicable, contradicting the hypothesis that S is a
normal form. In the remaining case, s is a solved variable in S.

Case s = x:

• Subcase t = x: Delete is applicable.
• Subcase t 6= x and x ∈ Var(t): OccursCheck is applicable.
• Subcase t 6= x, x 6∈ Var(t), and x ∈ Var(S \ {s ?

= t}): Eliminate is applicable.
• Subcase t 6= x, x 6∈ Var(t), and x /∈ Var(S \ {s ?

= t}): The variable x is
solved in S.

Case s = x sm for m > 0:

• Subcase t = η tn for n ≥ m: DecomposeX or ClashTypeX is applicable,
depending on whether x and η tn−m have the same type.

• Subcase t = y tn for n < m: OrientXY is applicable.
• Subcase t = f tn for n < m: ClashLenXF is applicable.

Case s = f sm:

• Subcase t = x tn: Orient is applicable.
• Subcase t = f tn: Due to well-typedness, m = n. Decompose is applicable.
• Subcase t = g tn: Clash is applicable.

Since each constraint is of the form x
?
= t where x is solved in S, the problem S

is in solved form. ut

Lemma 3. If the constraint set S is in solved form, then the associated substi-
tution is an idempotent MGU of S.

8

Proof. This lemma corresponds to Lemma 4.6.3 of Baader and Nipkow. Their
proof carries over to λfHOL. ut

Theorem 4 (Partial Correctness). If S =⇒! ⊥, then S has no solutions.
If S =⇒! S′, then S′ is in solved form and the associated substitution is an
idempotent MGU of S.

Proof. The first part follows from Lemma 1 applied transitively. The second part
follows from Lemma 1 applied transitively and Lemmas 2 and 3. ut

Theorem 5 (Termination). The relation =⇒ is well founded.

Proof. First, we define the auxiliary notion of weight of a term:

W(ζ sm) = m+ 1 +
∑m
i=1W(si)

Well-foundedness is proved by exhibiting a measure function from constraint sets
to quadruples of natural numbers (n1, n2, n3, n4), where

• n1 is the number of unsolved variables in S;
• n2 is the sum of all term weights:

∑
s

?
=t∈SW(s) +W(t);

• n3 is the number of right-hand side variable heads: |{s ?
= x t ∈ S}|;

• n4 is the number of arguments passed to left-hand side variable heads:∑
x sm

?
=t∈Sm.

The following table shows that the application of each positive rule lexico-
graphically decreases the quadruple:

n1 n2 n3 n4

Delete ≥ >
Decompose ≥ >
DecomposeX ≥ >
Orient ≥ = >
OrientXY ≥ = = >
Eliminate >

Eliminate, by solving one variable, decreases n1. Delete removes a constraint
from S, decreasing the weight. Decompose reduces the weight by 2. Prefix reduces
the set weight by at least m > 0, thanks to the presence of m in the definition of
W. The negative rules, which produce the special value ⊥, cannot contribute to
an infinite =⇒ chain.

For example, the quadruples corresponding to the derivation starting from
{x (z b c) ?

= g a (y c)} given above are (3, 14, 0, 1) > (2, 12, 1, 2) > (2, 12, 1, 1) >
(1, 10, 1, 0) > (1, 8, 1, 0). ut

A unification algorithm for λfHOL can be derived from the above transition
system, by committing to a strategy for applying the rules. This algorithm closely
follows the Ehoh implementation, abstracting away from complications such as
prefix optimization. We assume a flattened representation of terms; as in Ehoh,

9

each variable stores the term it is bound to in binding field (Sect. 3). We also rely
on a ApplySubst function, which applies the binding to the top-level variable.
The algorithm assumes that the terms to be unified have the same type. The
pseudocode is as follows:

function SwapNeeded(Term s, Term t) is
return t.head().isVar()

∧ (¬ s.head().isVar() ∨ s.num_args > t.num_args)

function Deref(Term s) is
while s.head().isVar() ∧ s.head().binding 6= Null do
s← ApplySubst(s, s.head().binding)

return s

function GobblePrefix(Term x, Term t) is
res ← Null
if x.type().args is suffix of t .head().type().args then

pref _len ← t .head().type().arity − x.type().arity
if pref _len ≤ t.num_args then

res ← Term(t.head(), t.args[1 . . pref _len])
return res

function Unify(Term s, Term t) is
constraints ← DoubleEndedQueue()
constraints.prepend(s)
constraints.prepend(t)

while ¬ constraints.isEmpty() do
t← Deref(constraints.dequeue())
s← Deref(constraints.dequeue())

if s 6= t then
if SwapNeeded(s, t) then
(t, s)← (s, t)

if s.head().isVar() then
x← s.head()
prefix ← GobblePrefix(x, t)
if prefix 6= Null then

start_idx ← prefix .num_args + 1
if x occurs in prefix then
return False

else
x.binding ← prefix

else
return False

else if s.head() = t.head() then
start_idx ← 1

else
return False

10

for i← start_idx to t.num_args do
s_arg ← s.args[i− start_idx + 1]
t_arg ← t.args[i]
if s_arg .head().isVar() ∨ t_arg .head().isVar() then

constraints.append(t_arg)
constraints.append(s_arg)

else
constraints.prepend(s_arg)
constraints.prepend(t_arg)

return True

The Unify function encompasses all the transition rules given above. The
s 6= t test in the body of Unify’s while loop corresponds to Delete. The
exchange triggered by the SwapNeeded test corresponds to Orient or OrientXY.
The GobblePrefix function determines whether Prefix is applicable; if so, it
finds the appropriate prefix subterm. Null is returned if either ClashTypeX or
ClashLenXF are applicable, resulting in a failure of Unify. A variable is bound to
a term only if it does not occur in the term, reflecting OccursCheck. The failure
that arises if s and t have different head symbols corresponds to Clash. To discover
such failures as early as possible, constraints with nonvariable heads are put in
the front of the queue (in the for loop at the end of Unify). Finally, Eliminate is
applied implicitly—by following variable bindings in Deref, we incrementally
apply the substitution we build.

4.2 Matching

Given two terms s and t, the matching problem consists of finding a substitution
σ such that σ(s) = t.We then write that “t is an instance of s” or “s generalizes t”
and call σ generalizing substitution. We are interested in most general generaliza-
tions (MGGs). Matching can be reduced to unification by treating variables in t
as constants [4], but E implements matching as a separate, optimized procedure.

Matching can be specified abstractly as a transition system on constraints
si .? ti consisting of the unification rules Decompose, Prefix, Clash, ClashTypeX,
ClashLenXF (with .? instead of ?

=) and augmented with

Double {x .? t, x .? t′}] S =⇒ ⊥ if t 6= t′

ClashLenXY {x sm .? y tn}] S =⇒ ⊥ if x 6= y and m > n

ClashFX {f s .? x t}] S =⇒ ⊥
Interestingly, the rule Delete is not sound for matching. Suppose that we are given
problem {x .? x, x .? g x}. Application of Delete to the first constraint would
yield end state {x .? g x}, even though the original problem has no solution.

Matching rules are both well founded and complete. Both properties are
proven analogously to unification rules.

Theorem 6 (Partial Correctness). If S =⇒! ⊥, then S has no solutions. If
S =⇒! S′, then S′ is solved form and the associated substitution is the MGG
of S.

11

Theorem 7 (Termination). The relation =⇒ is well founded.

The pseudocode for matching closely follows that given for unification:

function Match(Term s, Term t) is
constraints ← Stack()
constraints.push(s)
constraints.push(t)

while ¬ constraints.isEmpty() do
t← constraints.pop()
s← constraints.pop()

if s.head().isVar() then
x← s.head()
prefix ← GobblePrefix(x, t)
if prefix 6= Null ∧ (x.binding = Null ∨ x.binding = prefix) then

start_idx ← prefix .num_args + 1
x.binding ← prefix

else
return False

else if s.head() = t.head() then
start_idx ← 1

else
return False

for i← start_idx to t.num_args do
constraints.push(s.args[i− start_idx + 1])
constraints.push(t.args[i])

return True

The rules that are common to unification and matching are applied in the
same way. The absence of the SwapNeeded test reflects the absence of Orient
and OrientXY rules. Similarly, the absence of Deref calls reflects the absence
of Eliminate. Binding a variable to a term is now done without checking for
occurrences of the former in the latter, effectively disabling OccursCheck. The
algorithm checks whether a variable is already bound before binding it, corre-
sponding to the new Double rule. Finally, GobblePrefix will return Null if
ClashFX or ClashLenXY applies.

5 Indexing Data Structures

Superposition provers like E work by saturation. Their main loop heuristically
selects a clause and searches for potential inference partners among a possibly
large set of other clauses. Mechanisms such as simplification and subsumption
also require locating terms in a large clause set. For example, when E derives
a new equation s ≈ t, if s is larger than t according to the term order, it will
rewrite all instances σ(s) of s to σ(t) in existing clauses.

12

To avoid iterating over all terms (including subterms) in large clause sets,
superposition provers store the potential inference partners in indexing data
structures. A term index stores a set of terms S. Given a query term t, a query
returns all terms s ∈ S that satisfy a given retrieval condition: σ(s) = σ(t) (s and
t are unifiable), σ(s) = t (s generalizes t), or s = σ(t) (s is an instance of t), for
some substitution σ. Perfect indices return exactly the subset of terms satisfying
the retrieval condition. In contrast, imperfect indices return a superset of eligible
terms, and the retrieval condition needs to be checked for each candidate.

E relies on two term indexing data structures, perfect discrimination trees [31]
and fingerprint indices [40], that needed to be generalized to λfHOL. It also uses
feature vector indices [41] to speed up clause subsumption and related techniques,
but these require no changes to work with λfHOL clauses.

5.1 Perfect Discrimination Trees

Discrimination trees [31] are tries in which every node is labeled with a symbol
or a variable. A path from the root to a leaf node corresponds to a “serialized
term”—a term expressed without parentheses and commas. Consider the following
discrimination trees:

D1 =
f

a

g

a

a

b

a b

D2 =
f

x

g

a

a

y

a x

x

Assuming a, b, x, y : ι, f : ι → ι, and g : ι2 → ι, the trees D1 and D2 represent
the term sets {f(a), g(a, a), g(b, a), g(b, b)} and {f(x), g(a, a), g(y, a), g(y, x), x}.

E uses perfect discrimination trees for finding generalizations of query terms.
For example, if the query term is g(a, a), it would follow the path g.a.a in the
tree D1 and return {g(a, a)}. For D2, it would also explore paths labeled with
variables, binding them as it proceeds, and return {g(a, a), g(y, a), g(y, x), x}.

The data structure relies on the observation that serializing is unambiguous:
Assuming that symbols and variables are declared with unique types, distinct
terms always give rise to distinct serialized terms. Conveniently, this property
also holds for λfHOL terms. Assume that two distinct λfHOL terms yield the
same serialization. Clearly, they must disagree on parentheses; one will have the
subterm s t u where the other has s (t u). However, these two subterms cannot
both be well typed; if t has the right type to be passed as argument to s, then
t u must has the wrong type.

When generalizing the data structure to λfHOL, we face a slight complication
due to partial application. First-order terms can only be stored in leaf nodes,
but in Ehoh we must also be able to represent partially applied terms, such as
f, g, or g a (assuming, as above, that f is unary and g is binary). Conceptually,

13

this can be solved by storing a Boolean on each node indicating whether it is
an accepting state. In the implementation, the change is more subtle, because
several parts of E’s code implicitly assume that only leaf nodes are accepting.

The main difficulty specific to λfHOL concerns applied variables. To enumerate
all generalizing terms, E needs to backtrack from child to parent nodes. To achieve
this, it relies on two stacks that store subterms of the query term:

• term_stack stores the terms that must be matched in turn against the
current subtree;

• term_proc stores, for each node from the root to the current subtree, the
corresponding processed term, including any arguments yet to be matched.

The matching procedure starts at the root with an empty substitution σ.
Initially, term_stack contains the query term, and term_proc is empty. The
procedure advances by moving to a suitable child node:

A. If the node is labeled with a symbol f and the top item t of term_stack is
of the form f(tn), replace t by n new items t1, . . . , tn, and push t onto term_
proc.

B. If the node is labeled with a variable x, there are two subcases. If x is already
bound, check that σ(x) = t; otherwise, extend σ so that σ(x) = t. Next, pop
a term t from term_stack and push it onto term_proc.

The goal is to reach an accepting node. If the query term and all the terms stored
in the tree are first-order, term_stack will then be empty, and the entire query
term will have been matched.

Backtracking works in reverse: Pop a term t from term_proc; if the current
node is labeled with an n-ary symbol, discard term_stack’s topmost n items;
finally, push t onto term_stack. Variable bindings must also be undone.

As an example, looking up g(b, a) in the tree D1 would result in the following
succession of stack states, starting from the root ε along the path g.b.a:

ε g g.b g.b.a

term_stack: [g(b, a)] [b, a] [a] []
term_proc: [] [g(b, a)] [b, g(b, a)] [a, b, g(b, a)]

(The notation [a1, . . . , an] represents the n-item stack with a1 on top.) Backtrack-
ing amounts to moving leftwards: When backtracking from the node g to the
root, we pop g(b, a) from term_proc, we discard two items from term_stack,
and we push g(b, a) onto term_stack.

To adapt the procedure to λfHOL, the key idea is that an applied variable is
not very different from an applied symbol. A node labeled with an n-ary symbol
or variable ζ matches a prefix t′ of the k-ary term t popped from term_stack
and leaves n− k arguments u to be pushed back, with t = t′ u. If ζ is a variable,
it must be bound to the prefix t′. Backtracking works analogously: Given the
arity n of the node label ζ and the arity k of the term t popped from term_proc,
we discard the topmost n− k items u from term_proc.

14

To illustrate the procedure, we consider the tree D2 but change y’s type to
ι→ ι. This tree represents the set {f x, g a a, g (y a), g (y x), x}. Let g (g a b)
be the query term. We have the following sequence of substitutions and stacks:

ε g g.y g.y.x

σ: ∅ ∅ {y 7→ g a} {y 7→ g a, x 7→ b}
term_stack: [g (g a b)] [g a b] [b] []
term_proc: [] [g (g a b)] [g a b, g (g a b)] [b, g a b, g (g a b)]

When backtracking from g.y to g, by comparing y’s arity of n = 1 with g a b’s
arity of k = 0, we determine that one item must be discarded from term_stack.
Finally, to avoid traversing twice as many subterms as in the first-order case,
we can optimize prefixes: Given a query term ζ tn, we can also match prefixes
ζ tk, where k < n, by allowing term_stack to be nonempty at the end. If ac-
cepting nodes correspond to legal prefixes, the stack will then contain exactly
the remaining arguments: [tk+1, . . . , tn].

Similarly to unification and matching, we present finding generalizations
in a perfect discrimination tree as a transition system. States are quadruples
Q = (t, b,D , σ), where t is a list of terms, b is a list of tuples storing information
needed for backtracking, D is a discrimination (sub)tree, and σ is a substitution.

Let D be a perfect discrimination tree. Term(D) denotes the set of terms
stored in D. The function D|ζ returns a singleton set containing the subtree
below D’s ζ edge if it exists. If D’s root is accepting, val(D) = (s, d), where s is
the accepted term and d is some arbitrary data (e.g., an equation whose left- or
right-hand side is t).

Starting from an initial state ([t], [], D, ∅), where t is the query term and D is
an entire discrimination tree, the following transitions are possible:

AdvanceF (f sm · t, b, D, σ) (sm · t, (f,m,D, σ) · b, D|f , σ) if D|f is defined
AdvanceX (s sm · t, b, D, σ) (sm · t, (s,m,D, σ) · b, D|x, σ[x 7→ s])

if D|x is defined, x and s have the same type, and σ(x) is either undefined
or equal to s

Backtrack (sm · t, (s,m,D0, σ0) · b, D, σ) (s sm · t, b, D0, σ0)

Success ([], b, D, σ) (val(D), σ) if val(D) is defined

In the rules, · denotes prepending an element or a list to a list, and D|ζ denotes
the subtree labeled by ζ, if it exists. Intuitively, AdvanceF and AdvanceX move
deeper in the tree, generalizing cases A and B above to λfHOL terms. Backtrack
can be used to move back to a previous state. Success rule extracts the term t
and data d stored in an accepting node.

The following derivation illustrates how to locate a generalization of g (g a b)
in the tree D2:

([g (g a b)], [], D, {})
 AdvanceF ([g a b], [(g, 1, D, ∅)], D|g, {})
 AdvanceX ([b], [(g a, 1, D|g, ∅), (g, 1, D, ∅)], D|g.y, {y 7→ g a})
 AdvanceX ([], [(b, 0, D|g.y, {y 7→ g a}), (g a, 1, D|g, ∅), (g, 1, D, ∅)],

D|g.y.x, {y 7→ g a, x 7→ b})
 Success ((g (y x), d), {y 7→ g a, x 7→ b})

15

Let Advance = AdvanceF∪ AdvanceX. It is easy to show that Backtrack undoes
an Advance transition and can be avoided when starting from an initial state.

Lemma 8. If Q Advance Q′, then Q′ Backtrack Q.

Proof. There are two cases to check:

(f sm · t, b, D, σ) AdvanceF (sm · t, (f,m,D, σ) · b, D|f , σ)
 Backtrack (f sm · t, b, D, σ)

(s sm · t, b, D, σ) AdvanceX (sm · t, (s,m,D, σ) · b, D|x, σ[x 7→ s])

 Backtrack (s sm · t, b, D, σ) ut

Lemma 9. If Q Advance Q′ Backtrack Q′′, then Q′′ = Q.

Proof. By Lemma 8, Q′ Backtrack Q. Moreover, by inspecting its definition, we
see that Backtrack is functional. Therefore, Q′′ = Q. ut

Lemma 10. Let Q0 = ([t], [], D, ∅). If Q0 ∗ Q′, then Q0 ∗Advance Q′.

Proof. Let Q0 · · · Qn = Q′. Let i be the index of the first transition
Qi Backtrack Qi+1. Since Q0’s backtracking stack is empty, we must have i 6= 0.
Hence we have Qi−1 Advance Qi Backtrack Qi+1. By Lemma 9, Qi−1 = Qi+1.
Thus, we can shorten the derivation to Q0 · · · Qi−1 = Qi+1 · · · Qn,
thereby eliminating one Backtrack transition. By repeating this process, we can
eliminate all applications of Backtrack. ut

Lemma 11. There exist no infinite chains Q0 Advance Q1 Advance · · · .

Proof. With each Advance transition, the height of the discrimination tree de-
creases by at least one. In an infinite chain, we would eventually reach a tree of
height 0, consisting of a single node, from which no Advance transition is possible,
contradicting the chain’s existence. ut

Perfect discrimination trees match a single term against a set of terms. To
show that there are correct, we will connect them to the transition system
=⇒ for matching (Sect. 4). This connection will help us show that whenever
discrimination tree stores a generalization of a query term, this generalization
can be found. To express the refinement argument, we introduce an intermediate
transition system, ↪−→, that focuses on a single pair of terms (like =⇒) but
that solve the constraints in a depth-first, left-to-right fashion and build the
substitution incrementally (like). Its initial states are of the form ([s .? t], ∅).
Its transitions are as follows:

Decompose (f sm .? f tm · c, σ) ↪−→ ((s1 .? t1, . . . , sm .? tm) · c, σ)
DecomposeX (x sm .? u tm · c, σ) ↪−→ ((s1 .? t1, . . . , sm .? tm) · c, σ[x 7→ u])

if x and u have the same types and either σ(x) is undefined or σ(x) = u

Success ([], σ) ↪−→ σ

16

Clash (f sm .? g tn · c, σ) ↪−→ ⊥
ClashTypeX (x sm .? u tm · c, σ) ↪−→ ⊥ if x and u have different types
ClashLenXF (x sm .? f tn · c, σ) ↪−→ ⊥ if m > n

ClashLenXY (x sm .? y tn · c, σ) ↪−→ ⊥ if x 6= y and m > n

ClashFX (f s .? x t · c, σ) ↪−→ ⊥
Double (x sm .? u tm · c, σ) ↪−→ ⊥

if x and u have the same type, σ(x) is defined, and σ(x) 6= u

We need an auxiliary function to convert ↪−→ states to =⇒ states. Let

α(c) = {s .
? t | s .

? t ∈ c} α(σ) = {x .
? t | σ is defined on x and σ(x) = t}

α(c, σ) = α(c) ∪ α(σ) α(⊥) = ⊥

Moreover, let S range over states of the form (c, σ) and R additionally range
over special states of the form σ or ⊥.

Lemma 12. If S ↪−→ R, then α(S) =⇒∗ α(R).

Proof. By case distinction on R. Let S = (c, σ).

Case R = (c′, σ′): The only possible rules are ↪−→Decompose and ↪−→DecomposeX.
If ↪−→Decompose is applied, then =⇒Decompose is applicable and results in α(R). If
↪−→DecomposeX is applied, either we havem > 0, and =⇒ DecomposeX is applicable,
or m = 0, and α(c′, σ′) = α(S), which implies that the two states are connected
by an idle transition of =⇒∗.

Case R = ⊥: All the ↪−→ rules resulting in ⊥ except for Double, have the same
side conditions as the corresponding =⇒ rules. ↪−→Double rule corresponds to
=⇒Double rule if m = 0. However, if m 6= 0, we need an intermediate =⇒DecomposeX

step before rule =⇒Double can be applied to derive ⊥. Namely, since ↪−→Double is
applicable, we have that σ(x) = u′ 6= u. Hence, x .? u′ must be present in α(c, σ).
Rule =⇒DecomposeX will augment this set with x .? u, enabling =⇒Double.

Case R = σ: The only possible rule is ↪−→Success, with c = []. Since α(S) = α(σ),
this transition corresponds to an idle transition of =⇒∗. ut

Lemma 13. If S ↪−→! R, then R is either some substitution σ′ or ⊥. If S ↪−→!

σ′, then σ′ is the MGG of α(S). If S ↪−→! ⊥, then α(S) has no solutions.

Proof. First, we show that states S ′ = (c′, σ′) cannot be normal forms, by
exhibiting transitions from such states. If c′ = [], the ↪−→Success rule would apply.
Otherwise, let c′ = c1 · c′′, and consider the matching problem {c1}∪α(σ′). If this
problem is in solved form, c1 is a constraint corresponding to a solved variable,
and we can apply ↪−→DecomposeX to move the constraint into the substitution.
Otherwise, some =⇒ rule can be applied. This rule necessarily focuses on c1,
since the constraints from α(σ′) correspond to solved variables. The homologous
↪−→ rule can be applied to S ′.

17

Second, by Lemma 12, if S ↪−→! σ′, then α(S) =⇒∗ α(σ′). By construction,
α(σ′) is in solved form. Thus, α(S) =⇒! α(σ′). By Theorem 6, the substitution
corresponding to α(σ′)—that is, σ′—is the MGG of α(S).

Third, by Lemma 12, if S ↪−→! ⊥, then α(S) =⇒! ⊥. By Theorem 6, α(S)
has no solutions. ut

Lemma 14. The relation ↪−→ is well founded.

By Lemma 12, every ↪−→ transition corresponds zero or more =⇒ transitions.
Since=⇒ is well founded (by Theorem 7), the only transitions that can violate well-
foundedness of ↪−→ are the ones that perform idle =⇒ transitions: ↪−→DecomposeX

for m = 0 and ↪−→Success. The latter is terminal, so it cannot contribute to ab
infinite ↪−→ chains. And since ↪−→DecomposeX, with m = 0, decreases the length of
α(c), it can be applied at most finitely many times. Thus ↪−→ is well founded.

Lemma 15. If term s generalizes term t, then ([s .? t], ∅) ↪−→! σ, where σ is
the MGG of s .? t.

Proof. By Lemma 14, there exists a normal form R starting from S = ([s .? t],
∅). Since s .? t is solvable, by Lemma 13, R must be the MGU for s and t. ut

Lemma 16. If there exists a term s ∈ Term(D) that generalizes the query
term t, then there exists a derivation ([t], [], D, ∅) ! ((s, d), σ).

Proof. By Lemma 15, we know that (s .? t, ∅) ↪−→! σ for each s ∈ Term(D)
generalizing t. This means that there exists a derivation of the form ([s .? t], ∅) =
S0 ↪−→ S1 ↪−→ · · · ↪−→ Sn ↪−→ σ. The n first transitions must be Decompose or
DecomposeX, and the last transition must be Success.

We show that there exists a derivation of the form ([t], [], D, ∅) = Q0 Q1
· · · Qn ((s, d), σ), where Qi = (ti, bi, Di, σi) for each i. We define ti, Di,
and bi as follows, for i > 0:

• The term list ti consists of the right-hand sides of the constraints ci, in the
same order.

• If a leaf node storing s was reached in n transitions, the serialization of s
must be of the form ζ1. · · · .ζn. Take Di = Di−1|ζi .

• The backtracking information bi is set to (ζi,m,Di−1, σi−1) · bi−1, where
m = |ti| − |ti−1|+ 1.

It is easy to check that the sequence of quadruples Qi forms a derivation:

• If (ci, σi) ↪−→Decompose (ci+1, σi+1), then Qi AdvanceF Qi+1.
• If (ci, σi) ↪−→DecomposeX (ci+1, σi+1), then Qi AdvanceX Qi+1.
• If (cn, σn) ↪−→Success σ, then Qn Success ((s, d), σ). ut

Lemma 17. If ([t], [], D, ∅) + ((s, d), σ), then s ∈ Term(D) and σ is the MGG
of s .? t.

18

Proof. Let ([t], [], D, ∅) = Q0 Q1 · · · Qn ((s, d), σ) be a derivation,
where Qi = (ti, bi, Di, σi) for each i. Without loss of generality, by Lemma 10,
we can assume that the derivation contains no Backtrack transitions.

The first conjunct, s ∈ Term(D), holds by definition for any term found from
an initial state. To prove the second conjunct, we first introduce a function preord
that defines the preorder decomposition of a list of terms:

preord([]) = []

preord(ζ sn · xs) = (ζ, sn · xs) · preord(sn · xs)

Given a term s, preord([s]) gives a sequence (ζ1, args1), . . . , (ζn, argsn). Since
s ∈ Term(D), the sequence D0, . . . , Dn follows the serialization of s: Di = Di−1|ζi
for each i > 0.

Next, we show that there exists a derivation of the form ([s .? t], ∅) = S0 ↪−→
· · · ↪−→ Sn ↪−→ σ, where Si = (ci, σi). We define ci, for i > 0, as the list of
constraints whose left-hand sides are argsi and right-hand sides are ti. Both lists
have the same length.

We can then check that the sequence of states Si forms a derivation:

• If Qi AdvanceF Qi+1, then Si ↪−→Decompose Si+1.
• If Qi AdvanceX Qi+1, then Si ↪−→DecomposeX Si+1.
• If Qn Success σ, then Sn ↪−→Success σ. ut

Theorem 18 (Total Correctness). Let D be a perfect discrimination tree
and t be a term. The sets {s ∈ Term(D) | ∃σ. σ(s) = t} and {s | ∃d, σ. ([t], [], D, ∅)
 ! ((s, d), σ)} are equal.

Proof. This follows from Lemmas 16 and 17. ut

The above theorem states that all generalizations s of a term t stored in the
perfect discrimination tree can be found, but it does not exclude nondeterminism.
Often, both AdvanceF and AdvanceX are applicable. To find all generalizations,
we need to follow both transitions. But for some applications, it is enough to find
a single generalization.

To cater for both styles, E provides iterators that store the current state of
a traversal through a discrimination tree. After the iterator is initialized with
the root node D and the query term t, each call to FindNextVal will move
the iterator to the next node that generalizes the query term and stores a value,
indicating an accepting node. After all such nodes have been traversed, the
iterator is set to point to Null .

The pseudocode for Ehoh’s updated iterator-based functions and procedures
is given below. The following definitions constitute the high-level interface for
iterating through values incrementally or for obtaining all values.

function InitIter(PDTNode D, Term t) is
i← Iterator()
(i.node, i.term_stack , i.term_proc, i.child_iter)← (D, [t], [],Start)
return i

19

procedure FindNextVal(Iterator i) is
do

FindNextNode(i)
while i.node 6= Null ∧ (¬ i.term_stack .isEmpty() ∨ ¬ i.node.has_val())

function AllVals(PDTNode D, Term t) is
i ← InitIter(D, t)
hit ← FindNextVal(i)
res ← ∅
while i .node 6= Null do

res ← res ∪ {i .node.val()}
FindNextVal(i)

return res

The core logic is implemented in FindNextNode, presented below. It visits
edges labeled with variables before visiting edges labeled with symbols. We
assume that we can iterate through the children of a node using a function
NextVarChild that, given a tree node and iterator through children, advances
the iterator to the child corresponding to the next variable. (There is no need
to iterate through symbols, because at most one such child should be visited.)
Furthermore, we assume that the iterator can also be in the distinguished states
Start and End. Start indicates that no child has been visited yet, whereas End
indicates that we have visited all children.

We also rely on a function Child that returns a child corresponding to a
symbol or a variable, if one exists, or Null otherwise. The information we need
for backtracking includes the last visited child of the node and whether a variable
was bound.

procedure BacktrackToVar(Iterator i) is
forever do
if i.term_proc.isEmpty() then
i.node ← Null
return

else
(t,D, child_iter , n, x)← i.term_proc.pop()

for i← 1 to n do
i.term_stack .pop()

i.term_stack .push(t)
i.node ← D
i.child_iter ← child_iter

if x 6= Null then
x.binding ← Null

if child_iter 6= End then
return

procedure FindNextNode(Iterator i) is
if i.term_stack .isEmpty() then

20

BacktrackToVar(i)
advanced ← False
while i.node 6= Null ∧ ¬ advanced do
while i.child_iter 6= End ∧ ¬ advanced do
i.child_iter ← NextVarChild(i.node, i.child_iter)
if i.child_iter 6= End then
x← i.child_iter .var()
t← i.term_stack .top()
prefix ← GobblePrefix(x, t)
if prefix 6= Null ∧ (x.binding = Null ∨ x.binding = prefix) then
i.term_stack .pop()
pushed ← t.num_args − prefix .num_args
for j ← t.num_args() downto prefix .num_args + 1 do
i.term_stack .push(t.args[j])

if x.binding = Null then
x.binding ← prefix
i.term_proc.push((t, i.node, i.child_iter , pushed , x))

else
i.term_proc.push((t, i.node, i.child_iter , pushed ,Null))

i .node ← Child(i.node, x)
advanced ← True

t← i.term_stack .top()
if i.child_iter = End

∧ ¬ t.head().isVar() ∧ Child(D, t.head()) 6= Null then
i.term_stack .pop()
for j ← t.num_args downto 1 do
i.term_stack .push(t.args[j])

i.term_proc.push((t, i.node, i.child_iter , t.num_args,Null))
i .node ← Child(i.node, t.head())
advanced ← True

if ¬ advanced then
BacktrackToVar(i)

else
i.child_iter ← Start

5.2 Fingerprint Indices

Fingerprint indices [40] trade perfect indexing for a compact memory represen-
tation and more flexible retrieval conditions. The basic idea is to compare terms
by looking only at a few predefined sample positions. If we know that term s has
symbol f at the head of the subterm at 2.1 and term t has g at the same position,
we can immediately conclude that s and t are not unifiable.

Let A (“at a variable”), B (“below a variable”), and N (“nonexistent”) be
distinguished symbols not present in the signature. Given a term t and a position p,

21

the fingerprint function Gfpf is defined as

Gfpf (t, p) =

f if t|p has a symbol head f
A if t|p is a variable
B if t|q is a variable for some proper prefix q of p
N otherwise

Based on a fixed tuple of sample positions pn, the fingerprint of a term t is
defined as Fp(t) =

(
Gfpf (t, p1), . . . ,Gfpf (t, pn)

)
. To compare two terms s and t,

it suffices to check that their fingerprints are componentwise compatible using
the following unification and matching matrices:

f1 f2 A B N
f1 7 7

f2 7 7
A 7
B
N 7 7 7

f1 f2 A B N
f1 7 7 7 7

f2 7 7 7 7
A 7 7
B
N 7 7 7 7

The rows and columns correspond to s and t, respectively. The metavariables
f1 and f2 represent arbitrary distinct symbols. Incompatibility is indicated by 7.

As an example, let (ε, 1, 2, 1.1, 1.2, 2.1, 2.2) be the sample positions, and let
s = f(a, x) and t = f(g(x), g(a)) be the terms to unify. Their fingerprints are

Fp(s) = (f, a,A,N,N,B,B)
Fp(t) = (f, g, g ,A,N, a ,N)

Using the left matrix, we compute the compatibility vector (–,7, –,7, –, –, –). The
mismatches at positions 1 and 1.1 indicate that s and t are not unifiable.

A fingerprint index is a trie that stores a term set T keyed by fingerprint. The
term f(g(x), g(a)) above would be stored in the node addressed by f.g.g.A.N.a.N,
possibly together with other terms that share the same fingerprint. This organi-
zation makes it possible to unify or match a query term s against all the terms T
in one traversal. Once a node storing the terms U ⊆ T has been reached, due to
overapproximation we must apply unification or matching on s and each u ∈ U.

When adapting this data structure to λfHOL, we must first choose a suitable
notion of position in a term. Conventionally, higher-order positions are strings
over {1, 2} indicating, for each binary application t1 t2, which term ti to follow.
Given that this is not graceful, it seems preferable to generalize the first-order
notion to flattened λfHOL terms—e.g., x a b |1 = a and x a b |2 = b. However,
this approach fails on applied variables. For example, although x b and f a b are
unifiable (using {x 7→ f a}), sampling position 1 would yield a clash between
b and a. To ensure that positions remain stable under substitution, we propose
to number arguments in reverse:

t|ε = t ζ tn . . . t1 |i.p = ti |p if 1 ≤ i ≤ n

We use a nonstandard notation, t|p, for this nonstandard notion. The operation
is undefined for out-of-bound indices.

22

Lemma 19. Let s and t be unifiable terms, and let p be a position such that
the subterms s|p and t|p are defined. Then s|p and t|p are unifiable.

Proof. By structural induction on p.

Case p = ε: Trivial.

Case p = q.i: Let s|q = ζ sm . . . s1 and t|q = η tn . . . t1. Since p is defined
in both s and t, we have s|p = si and t|p = ti. By the induction hypothesis,
s|q and t|q are unifiable, meaning that there exists a substitution σ such that
σ(ζ sm . . . s1) = σ(η tn . . . t1). Hence, σ(s1) = σ(t1), . . . , σ(si) = σ(ti). Thus,
σ(s|p) = σ(t|p). ut

Let t〈p denote the subterm t|q such that q is the longest prefix of p for which
t|q is defined. The λfHOL version of the fingerprint function is defined as follows:

Gfpf ′(t, p) =

f if t|p has a symbol head f
A if t|p has a variable head
B if t|p is undefined but t〈p has a variable head
N otherwise

Except for the reversed numbering scheme, Gfpf ′ coincides with Gfpf on first-order
terms. The fingerprint Fp′(t) of a term t is defined analogously as before, and
the same compatibility matrices can be used.

The most interesting new case is that of an applied variable. Given the sample
positions (ε, 2, 1), the fingerprint of x is (A,B,B) as before, whereas the fingerprint
of x c is (A,B, c). As another example, let (ε, 2, 1, 2.2, 2.1, 1.2, 1.1) be the sample
positions, and let s = x (f b c) and t = g a (y d). Their fingerprints are

Fp′(s) = (A,B, f ,B,B, b, c)
Fp′(t) = (g , a ,A,N,N,B, d)

The terms are not unifiable due to the incompatibility at position 1.1 (c versus d).
We can easily support prefix optimization for both terms s and t being

compared: We ensure that s and t are fully applied, by adding enough fresh
variables as arguments, before computing their fingerprints.

Because fingerprint indexing is an imperfect method, its correctness theorem
must be stated weakly. Terms that have incompatible fingerprint cannot be
unified or matched, but the converse does not hold.

Lemma 20. If s and t are unifiable, then Gfpf ′(s, p) and Gfpf ′(t, p) are compat-
ible according to the unification matrix.

Proof. By contraposition, it suffices to consider the eight blank cells in the
unification matrix. Since unifiability is a symmetric relation, we can further
restrict our focus to four cases:

Gfpf ′(s, p) = f1 f1 f2 A
Gfpf ′(t, p) = f2 N N N

23

The last three cases admit the same argument.

Case f1, f2: By definition of Gfpf ′, s|p and t|p must be of the forms f1 s and f2 t,
respectively. Clearly, s|p and t|p are not unifiable. By Lemma 19, s and t are not
unifiable.

Case f1,N; f2,N; or A,N: From Gfpf ′(s, p) = N, we deduce that p 6= ε. Let p =
q.i.r, where q is the longest prefix such that Gfpf ′(t, q) 6= N. Since Gfpf ′(t, q.i) = N,
the head of t|q must be some symbol g. (For a variable head, we would have
Gfpf ′(t, q.i) = B.) Hence, t|q has the form g tn . . . t1, for n < i. Since q.i is a legal
position in s, s|q has the form ζ sm . . . s1, with i ≤ m. A necessary condition for
σ(s|q) = σ(t|q) is that σ(ζ sm . . . sn+1) = σ(g), but this is impossible because
the left-hand side is an application (since n < m), whereas the right-hand side is
the symbol g. By Lemma 19, s and t are not unifiable. ut

Lemma 21. If s generalizes t, then Gfpf ′(s, p) and Gfpf ′(t, p) are compatible
according to the matching matrix.

Proof. The proof is by case distinction, similarly to Lemma 20. ut

Theorem 22 (Overapproximation). If s and t are unifiable, then Fp′(s) and
Fp′(t) are compatible according to the unification matrix. If s generalizes t, then
Fp′(s) and Fp′(t) are compatible according to the matching matrix.

Proof. This follows from Lemmas 20 and 21.

5.3 Feature Vector Indices

Subsumption is a crucial operation to prune the search space. A clause C subsumes
another clause D if there exists a subsitution σ such that σ(C) ⊆ D. Feature-
vector indices [41] are an imperfect indexing data structure that can be used to
retrieve clauses that subsume a query clause (forward subsumption) or that are
subsumed by the query clause (backward subsumption).

Feature-vector indices are similar to fingerprint indices, but they cannot work
positionally, because literals are unordered in a clause. Each clause is represented
by a vector of numerical features. The features must be compatible with the
subsumption relation in the following sense: For any feature f , whenever C
subsumes D, we must have f(C) ≤ f(D). For example, the number of occurrences
of a given symbol c is a legal feature.

Feature vectors are organized in a trie. When performing a lookup, we must
consider all paths along which the query term’s vector entries are pointwise
greater (for forward subsumption) or less (for backward subsumption) than or
equal to the corresponding trie nodes.

Unlike for discrimination trees and fingerprint indices, no changes were neces-
sary to adapt feature vectors indices to λfHOL. All the predefined features make
sense in λfHOL and are compatible with subsumption.

24

6 Inference Rules

Saturating provers try to show the unsatisfiability of a set of clauses by sys-
tematically adding logical consequences (up to simplification and redundancy),
eventually deriving the empty clause as an explicit witness of unsatisfiability. They
employ two kinds of inference rules: generating rules produce new clauses and are
necessary for completeness, whereas simplification rules delete existing clauses or
replace them by simpler clauses. This simplification is crucial for success, and
most modern provers spend a large part of their time on simplification.

E implements a variant of the given-clause algorithm. The proof state is
represented by two disjoint subsets of clauses, the processed clauses P and the
unprocessed clauses U . Initially, all clauses are unprocessed. At each iteration of
the main loop, the prover heuristically selects a given clause from U , adds it to
P , and performs all generating inferences between this clause and all clauses in
P . Resulting new clauses are added to U . This maintains the invariant that all
direct consequences between clauses in P have been performed. Simplification is
performed on the given clause (using clause in P as side premises), on clauses in
P (using the given clause), and on newly generated clauses (again, using P).

Ehoh implements essentially the same logical calculus as E, except that it
is generalized to λfHOL terms. The standard inference rules and completeness
proof of superposition can be reused verbatim; the only changes concern the basic
definitions of terms and substitutions [8, Sect. 1]. Completeness of superposition
for λfHOL terms has been formally proved by Peltier [35] using Isabelle.

6.1 The Generating Rules

The superposition calculus consists of the following four core generating rules,
whose conclusions are added to the proof state:

s 6≈ s′ ∨ C
ER

σ(C)

s ≈ t ∨ s′ ≈ u ∨ C
EF

σ(t 6≈ u ∨ s ≈ u ∨ C)

s ≈ t ∨ C u[s′] 6≈ v ∨ D
SN

σ(u[t] 6≈ v ∨ C ∨ D)

s ≈ t ∨ C u[s′] ≈ v ∨ D
SP

σ(u[t] ≈ v ∨ C ∨ D)

In each rule, σ denotes the MGU of s and s′. Not shown are order- and selection-
based side conditions that restrict the rules’ applicability.

Equality resolution and factoring (ER and EF) are single-premise rules that
work on entire terms that occur on either side of a literal occurring in the given
clause. To generalize them, it suffices to disable prefix optimization for our
unification algorithm.

The rules for superposition into negative and positive literals (SN and SP) are
more complex. As two-premise rules, they require the prover to find a partner for
the given clause. There are two cases to consider, depending on whether the given
clause acts as the first or second premise in an inference. Moreover, since the

25

rules operate on subterms s′ of a clause, it is important to be able to efficiently
locate all relevant subterms, including λfHOL-specific prefix subterms.

To cover the case where the given clause acts as the left premise, the prover
relies on a fingerprint index to compute a set of clauses containing terms possibly
unifiable with a side s of a positive literal of the given clause. Thanks to our
generalization of fingerprints, in Ehoh this candidate set is guaranteed to over-
approximate the set of all possible inference partners. The unification algorithm
is then applied to filter out unsuitable candidates. Thanks to prefix optimization,
we can avoid gracelessly polluting the index with all prefix subterms.

For the case where the given clause is the right premise, the prover traverses
its subterms s′ looking for inference partners in another fingerprint index, which
contains only entire left- and right-hand sides of equalities. Like E, Ehoh traverses
subterms in a first-order fashion. If prefix unification succeeds, Ehoh determines
the unified prefix and applies the appropriate inference instance.

6.2 The Simplifying Rules

Unlike generating rules, simplifying rules do not necessarily add conclusions to
the proof state—they can also remove premises. E implements over a dozen
simplifying rules, with unconditional rewriting and clause subsumption as the
most significant examples. Here, we restrict our attention to a single rule, which
best illustrates the challenges of supporting λfHOL:

s ≈ t u[σ(s)] ≈ u[σ(t)] ∨ C
ES

s ≈ t

Given an equation s ≈ t, equality subsumption (ES) removes a clause containing
a literal whose two sides are equal except that an instance of s appears on one
side where the corresponding instance of t appears on the other side.

E maintains a perfect discrimination tree that stores clauses of the form s ≈ t
indexed by s and t. When applying the ES rule, E considers each positive literal
u ≈ v of the given clause in turn. It starts by taking the left-hand side u as a
query term. If an equation s ≈ t (or t ≈ s) is found in the tree, with σ(s) = u,
the prover checks whether σ′(t) = v for some (possibly nonstrict) extension σ′
of σ. If so, ES is applicable, with a second premise of the form σ(s) ≈ σ(t) ∨ C.

To consider nonempty contexts, the prover traverses the subterms u′ and v′
of u and v in lockstep, as long as they appear under identical contexts. Thanks
to prefix optimization, when Ehoh is given a subterm u′, it can find an equation
s ≈ t in the tree such that σ(s) is equal to some prefix of u′, with n arguments
un remaining as unmatched. Checking for equality subsumption then amounts
to checking that v′ = σ′(t) un, for some extension σ′ of σ.

For example, let f (g a b) ≈ f (h g b) be the given clause, and suppose that
x a ≈ h x is indexed. Under context f [], Ehoh considers the subterms g a b and
h x b. It finds the prefix g a of g a b in the tree, with σ = {x 7→ g}. The prefix
h g of h g b matches the indexed equation’s right-hand side h x using the same
substitution, and the remaining argument in both subterms, b, is identical. Ehoh
concludes that the given clause is redundant.

26

7 Heuristics

E’s heuristics are largely independent of the prover’s logic and work unchanged
for Ehoh. On first-order problems, Ehoh’s behavior is virtually the same as E’s.
Yet, in preliminary experiments, we observed that some λfHOL benchmarks were
proved quickly by E in conjunction with the applicative encoding (Sect. 1) but
timed out with Ehoh. There were enough problems of this kind to prompt us to
take a closer look. Based on these observations, we extended the heuristics to
exploit λfHOL-specific features.

7.1 Term Order Generation

The inference rules and the redundancy criterion are parameterized by a term
order—typically an instance of KBO or LPO (Sect. 3). E can generate a symbol
weight function (for KBO) and a symbol precedence (for KBO and LPO) based on
criteria such as the symbols’ frequencies, their arities, and whether they appear
in the conjecture.

In preliminary experiments, we discovered that the presence of an explicit
application operator @ can be beneficial for some problems. A small example will
help illustrate this behavior. Let a : ι1, b : ι2, c : ι3, f : ι1 → ι2 → ι3, x : ι2 → ι3,
y : ι2, and z : ι3, and consider the clauses

f a y 6≈ c x b ≈ z

where the first one is the negated conjecture. Their applicative encoding is

@ι2,ι3(@ι1,ι2→ι3(f, a), y) 6≈ c @ι2,ι3(x, b) ≈ z

where @τ,υ is a type-indexed family of explicit application symbols representing
the application of a function of type τ → υ. With the applicative encoding,
generation schemes can take the symbols @τ,υ into account, effectively exploiting
the type information carried by such symbols. Since @ι2,ι3 is a conjecture symbol,
some weight generation scheme could give it a low weight, which would also
impact the second clause. By contrast, the native λfHOL clauses share no symbols;
the connection between them is hidden in the types of variables and symbols,
which are ignored by the heuristics.

To simulate the desirable behavior observed on applicatively encoded problems,
we introduced four generation schemes that extend E’s existing symbol-frequency-
based schemes by partitioning the symbols by type. To each symbol, the new
schemes assign a frequency corresponding to the sum of all symbol frequencies
for its class. Each new scheme is inspired by a similarly named type-agnostic
scheme in E, without type in its name:

• typefreqcount assigns as each symbol’s weight the number of occurrences
of symbols that have the same type.

• typefreqrank sorts the frequencies obtained using typefreqcount in in-
creasing order and assigns each symbol a weight corresponding to its rank.

27

• invtypefreqcount is typefreqcount’s inverse. Whenever typefreqcount
would assign a weight w to a symbol, it assigns M − w + 1, where M is the
maximum symbol weight according to typefreqcount.

• invtypefreqrank is typefreqrank’s inverse. It sorts the frequencies in de-
creasing order.

In addition, we designed four schemes that combine E’s type-agnostic and Ehoh’s
type-aware approaches using a linear equation:

• combfreqcount assigns as each symbol’s weight the value 2w1 + w2, where
w1 is the weight according to freqcount (i.e., the symbol’s frequency) and
w2 is the weight according to typefreqcount.

• combfreqrank sorts the frequencies obtained using combfreqcount in in-
creasing order and assigns each symbol a weight corresponding to its rank.

• invcombfreqcount is combfreqcount’s inverse. Whenever combfreqcount
would assign a weight w to a symbol, it assigns M − w + 1, where M is the
maximum symbol weight according to combfreqcount.

• invcombfreqrank is combfreqrank’s inverse. It sorts the frequencies in de-
creasing order.

To generate symbol precedences, E can sort symbols by weight and use the
symbol’s position in the sorted array as the basis for precedence. To account for
the type information introduced by the applicative encoding, we implemented
four type-aware precedence generation schemes, called typefreq, invtypefreq,
combfreq, and invcombfreq, that sort the symbols by weight according to
typefreqcount, invtypefreqcount, combfreqcount, and invcombfreqcount,
respectively. Ties are broken by comparing the symbols’ number of occurrences
and, if necessary, the position of their first occurrence in the input problem.

7.2 Literal Selection

The side conditions of the superposition rules (SN and SP, Sect. 6.1) allow
the use of a literal selection function to restrict the set of inference literals,
thereby pruning the search space. Given a clause, a literal selection function
returns a (possibly empty) subset of its literals. For completeness, any nonempty
subset selected must contain at least one negative literal. If no literal is selected,
all maximal literals become inference literals. The most widely used function
in E is probably SelectMaxLComplexAvoidPosPred, which we abbreviate to
SelectMLCAPP. It selects at most one negative literal, based on size, groundness,
and maximality of the literal in the clause. It also avoids negative literals that
share a predicate symbol with a positive literal in the same clause.

Intuitively, applied variables can potentially be unified with more terms than
terms with rigid heads. This makes them prolific in terms of possible inference
partners, a behavior we might want to avoid. However, shorter proofs might
be found if we prefer selecting applied variables. To cover both scenarios, we
implemented selection functions that prefer or defer selecting applied variables.

28

Let max (L) = 1 if L is a maximal literal of the clause it appears in; otherwise,
max (L) = 0. Let appvar(L) = 1 if L is a literal where either side is an applied
variable; otherwise, appvar(L) = 0. Based on these definitions, we devised the
following selection functions, both of which rely on SelectMLCAPP to break ties:

• SelectMLCAPPAvoidAppVar selects a negative literal L with the maximal
value of (max (L), 1− appvar(L)) according to the lexicographic order.
• SelectMLCAPPPreferAppVar selects a negative literal L with the maximal
value of (max (L), appvar(L)) according to the lexicographic order.

The presence of max (L) as the first criterion is motivated by initial experiments.

7.3 Clause Selection

Selection of the given clause is a critical choice point. E heuristically assigns
clause priorities and clause weights to the candidates. The priorities provide a
crude partition, whereas the weights are used to further distinguish candidates.
E’s main loop visits, in round-robin fashion, a set of priority queues. From each
queue, it selects a number of clauses with the highest priorities, breaking ties by
preferring smaller weights. Typically, one of the queues will use the clauses’ age
as priority, to ensure fairness.

E provides template weight functions that allow users to fine-tune parameters
such as weights assigned to variables or function symbols. The most widely
used template is ConjectureRelativeSymbolWeight, which we abbreviate to
CRSWeight. It computes term and clause weights according to the following
parameters:

conj_mul multiplier applied to the weight of conjecture symbols;
fweight weight of a nonnullary function symbol;
cweight weight of a nullary function symbol;
pweight weight of a predicate symbol;
vweight weight of a variable;
maxt_mul multiplier applied to the weight of maximal terms in a literal;
maxl_mul multiplier applied to the weight of maximal literals in a clause;
pos_mul multiplier applied to the weight of positive literals in a clause.

This templates works well for some applicatively encoded problems. To see
why, let a : ι, f : ι→ ι, x : ι, and y : ι→ ι, and consider the clauses

y x 6≈ x f a ≈ a

where the first one is the negated conjecture. Their applicative encoding is

@ι,ι(y, x) 6≈ x @ι,ι(f, a) ≈ a

The encoded clauses share the symbol @ι,ι, whose weight will be multiplied by
conj_mul—typically a factor in the interval (0, 1). By contrast, the native λfHOL

29

clauses share no symbols, and the heuristic would fail to notice that f and y have
the same type, giving a higher weight to the second clause.

To mitigate this effect, we implemented a new type-aware template function,
called CRSTypeWeight, that behaves like CRSWeight except that it applies the
conj_mul multiplier to all symbols whose type occurs in the conjecture. For the
example above, since ι→ ι appears in the conjecture, it would notice the relation
between the conjecture variable y and the symbol f and multiply f’s weight by
conj_mul.

A benefit of natively supporting λfHOL is that the prover can recognize applied
variables. It may make sense to penalize clauses that depend on this higher-order
feature—or perhaps such clauses should be promoted instead. To exploit this kind
of information in heuristics, we extended most of E’s weight function templates,
as well as CRSTypeWeight, with the following optional parameter:

appv_mul multiplier applied to terms that constitute either side of a literal and
whose head is a variable applied to at least one argument.

In addition, we implemented a new clause priority scheme, ByAppVarNum, that
separates the clauses by the number of top-level applied variables occurring in
the clause, favoring those containing fewer such variables.

7.4 Configurations and Modes

A combination of proof search parameters—including term order, literal selection,
and clause selection—is called a configuration. It is generally acknowledged that
most provable problems arising in practice can be proved quickly in at least one
configuration; but the configuration space being infinite, there is no easy way to
find this configuration.

For years, E has provided an auto mode, which analyzes the input problem
and chooses a configuration known to perform well on similar problems. More
recently, E has been extended with an autoschedule mode, which applies a port-
folio of configurations in sequence on the given problem, restarting the prover for
each configuration. Time slicing approaches tend to perform better in practice,
even if each configuration is given a shorter time slice.

Configurations that perform well on a wide range of problems have emerged
over time. One of them is the configuration that is most often chosen by E’s auto
mode. We call it boa (“best of auto”):

Term order: KBO
Weight generation: invfreqrank
Precedence generation: invfreq
Literal selection: SelectMLCAPP
Clause selection: 1.CRSWeight(SimulateSOS,

0.5, 100, 100, 100, 100, 1.5, 1.5, 1),
4.CRSWeight(ConstPrio,

0.1, 100, 100, 100, 100, 1.5, 1.5, 1.5),
1.FIFOWeight(PreferProcessed),

30

1.CRSWeight(PreferNonGoals,
0.5, 100, 100, 100, 100, 1.5, 1.5, 1),

4.Refinedweight(SimulateSOS, 3, 2, 2, 1.5, 2)

The clause selection scheme consists of five queues, each of which is specified by
a weight function template. The prefixes n. next to the template names indicate
that n clauses should be taken from the corresponding queue each time it is
visited. The first argument to each template is the clause priority scheme.

8 Preprocessing

E includes a preprocessor that transforms first-order formulas into clausal normal
form, before the main loop is started and inference rules are applied. Beyond
turning the problem into a conjunction of disjunctive clauses, the preprocessor
eliminates quantifiers, introducing Skolem symbols for essentially existential quan-
tifiers. For first-order logic, skolemization preserves satisfiability (unprovability)
and unsatisfiability (provability). In contrast, for higher-order logics without the
axiom of choice, naive skolemization is unsound, because it introduces symbols
that can be used to instantiate higher-order variables.

One solution proposed by Miller [33, Sect. 6] is to ensure that Skolem symbols
are always applied to a minimum number of arguments. Accordingly, the version
of λfHOL introduced by Bentkamp et al. [8] distinguishes between mandatory
and optional arguments. However, to keep the implementation simple, we have
decided to ignore this issue and consider all arguments as optional, including
those to Skolem symbols. We expect to extend Ehoh’s logic to full higher-order
logic with the axiom of choice, which will address the issue.

There is another transformation performed by preprocessing that is problem-
atic, but for a different reason. Definition unfolding is the process of replacing equa-
tionally defined symbols with their definitions and removing the defining equations.
A definition is a clause of the form f xm ≈ t, where the variables xm are distinct, f
does not occur in the right-hand side t, and Var(t) ⊆ {x1, . . . , xm}. This transfor-
mation preserves unsatisfiability (provability) for first- and higher-order logic, but
not for λfHOL, making Ehoh incomplete. The reason is that by removing the defi-
nitional clause, we also remove a symbol f that otherwise could be used to instanti-
ate a higher-order quantifier. For example, the clause set {f x ≈ x, f (y a) 6≈ a} is
unsatisfiable, whereas {y a 6≈ a} is satisfiable in λfHOL. (In full higher-order logic,
the second clause set would be unsatisfiable thanks to the {x 7→ λx. x} instance
and the β-rule.) For the moment, we have simply disabled definition unfolding
in Ehoh. We will enable it again once we have added support for λ-terms.

9 Evaluation

In this section, we consider the following questions: How useful are Ehoh’s new
heuristics? And how does Ehoh perform compared with the previous version
of E, 2.2, used directly or in conjunction with the applicative encoding, and

31

compared with other provers? To answer the first question, we evaluated each
new parameter independently. From the empirical results, we derived a new
configuration optimized for λfHOL problems. To answer the second question,
we compared Ehoh’s success rate and speed on λfHOL problems with native
higher-order provers and with E’s on their applicatively encoded counterparts.
We also included first-order benchmarks to measure Ehoh’s overhead with respect
to E.

We set a CPU time limit of 60 s per problem. This is more than allotted by
interactive proof tools such as Sledgehammer, or by cooperative provers such as
Leo-III and Satallax, but less than the 300 s of CASC [49]. The experiments were
performed on StarExec [45] nodes equipped with Intel Xeon E5-2609 0 CPUs
clocked at 2.40GHz and with 8192MB of memory. Our raw experimental data
are publicly available.2

9.1 Heuristics Tuning

We used the boa configuration as the basis to evaluate the new heuristic schemes.
For each heuristic parameter we tuned, we changed only its value while keeping the
other parameters the same as for boa. This gives an idea of how each parameter
value affects overall performance. All heuristic parameters were tested on a
5012 problem suite generated using Sledgehammer, consisting of four versions of
the Judgment Day [15] suite. The problems were given in native λfHOL syntax.

Term Order Generation. Evaluating new weight and precedence generation
heuristics amounts to testing each possible combination of frequency based
schemes, including E’s original type-agnostic schemes. Figure 1 shows the number
of solved (proved or disproved) problems for each combination. In this and the
next figures, the slanted number corresponds to boa, whereas bold singles out the
best value.

Figure 1 indicates that including type information in the generation schemes
results in a somewhat higher number of solved problems compared with E’s
type-agnostic schemes. Against our expectations, Ehoh’s combined schemes are
generally less efficient than its type-aware schemes.

Literal Selection. The literal selection function has little impact on perfor-
mance: Ehoh solves 2379 problems with SelectMLCAPP or SelectMLCAPPAvoid-
AppVar, and 2378 problems with SelectMLCAPPPreferAppVar.

Clause Selection. Clause selection is the heuristic component that we extended
the most. We must assess the effect of a new heuristic weight function, a multiplier
for the occurrence of top-level applied variables, and clause priority based on the
number of top-level applied variables.

To test the effect of the new type-based heuristic weight function, we changed
boa’s clause selection heuristic by using 4.CRSTypeWeight(. . .) where boa specifies
2 http://matryoshka.gforge.inria.fr/pubs/ehoh_results.tar.gz

32

http://matryoshka.gforge.inria.fr/pubs/ehoh_results.tar.gz

freq invfreq typefreq invtypefreq combfreq invcombfreq

freqcount 2294 2288 2287 2297 2290 2287
invfreqcount 2371 2373 2374 2370 2369 2377
freqrank 2326 2317 2323 2329 2322 2318
invfreqrank 2383 2379 2376 2380 2381 2381
typefreqcount 2305 2314 2301 2306 2302 2311
invtypefreqcount 2386 2381 2389 2388 2384 2379
typefreqrank 2326 2334 2322 2334 2321 2336
invtypefreqrank 2390 2382 2390 2394 2387 2386
combfreqcount 2273 2281 2271 2285 2269 2280
invcombfreqcount 2380 2375 2382 2379 2380 2375
combfreqrank 2321 2313 2319 2321 2318 2312
invcombfreqrank 2368 2378 2371 2378 2368 2380

Fig. 1. Evaluation of weight and precedence generation schemes

0.25 0.35 0.5 0.7 1 1.41 2 2.82 4
CRSWeight 2311 2341 2363 2374 2379 2376 2377 2376 2377
CRSTypeWeight 2331 2331 2360 2371 2372 2374 2373 2373 2372

Fig. 2. Evaluation of weight function and applied variable multipliers

4.CRSWeight(. . .). We chose nine values between 0.25 and 4 for testing the effect
of the applied variable multiplier.

Figure 2 summarizes the results of combining weight functions CRSWeight
and CRSTypeWeight will the different values for the applied variable multiplier.
Applying a multiplier smaller than 1, which corresponds to preferring literals
containing applied variables, can result in losing dozens of solutions. Overall, it
would seem that using the type-aware heuristic is slightly detrimental.

Finally, we evaluated the new clause priority ByAppVarNum, based on the num-
ber of top-level applied variables, by replacing 4.CRSWeight(ConstPrio,...)
with 4.CRSWeight(ByAppVarNum,...) in boa’s specification. ConstPrio, which
assigns each clause the same priority, enabled Ehoh to solve 2379 problems. By
contrast, ByAppVarNum led to 2377 solved problems. These results suggest that
ByAppVarNum is not particularly helpful.

New Configuration. The results presented above give an overview of how
each parameter influences performance. We also evaluated their performance in
combination, to derive an alternative to boa for λfHOL.

For each category of parameters, we chose either boa’s value of the parameter in
boa (“old”) or the best performing newly implemented parameter (“new”). Based on
the results above, for term orders, we chose the combination of invtypefreqrank
and invtypefreq; for clause selection, we chose CRSTypeWeight with ConstPrio
priority and an appv_mult factor of 1.41; for literal selection, we chose SelectMLC-
APPAvoidAppVar.

Figure 3 shows the number of solved problems for all combinations of these
parameters. From the two configurations that solve 2397 problems, we selected

33

Term order Literal selection Clause weight Solved
Old Old Old 2379
Old Old New 2374
Old New Old 2379
Old New New 2373
New Old Old 2394
New Old New 2397
New New Old 2395
New New New 2397

Fig. 3. Evaluation of combinations of new parameters

the “New Old New” combination as our suggested “higher-order best of auto,” or
hoboa, configuration. In the next subsection, we present a more detailed evaluation
of hoboa, along with other configurations, on a larger benchmark suite.

9.2 Main Evaluation

The benchmarks are partitioned as follows: (1) 1147 first-order TPTP [47] prob-
lems belonging to the FOF (untyped) and TF0 (monomorphic) categories, exclud-
ing arithmetic; (2) 5012 Sledgehammer-generated problems from the Judgment
Day [15] suite, targeting the monomorphic first-order logic embodied by TPTP
TF0; (3) all 530 monomorphic higher-order problems from the TH0 category of
the TPTP library belonging to the λfHOL fragment; (4) 5012 Judgment Day
problems targeting the λfHOL fragment of TPTP TH0.

The TPTP library includes benchmarks from various fields of computer
science and mathematics. It is the de facto standard for evaluating and testing
automatic provers, but it has few higher-order problems. For the first group
of benchmarks, we randomly chose 1000 FOF problems (out of 8172) and all
monomorphic TFF problems that are parsable by E within 60 s (amounting to
147 out of 231 monomorphic TFF problems). Both groups of Sledgehammer
problems include two subgroups of 2506 problems, generated to include 32 or
512 Isabelle lemmas (SH32 and SH512), to represent both smaller and larger
problems arising in interactive verification. Each subgroup itself consists of two
sub-subgroups of 1253 problems, generated by using either λ-lifting or SK-style
combinators to encode λ-expressions.

We evaluated Ehoh against two higher-order provers, Leo-III and Satallax,
and a version of E, which we call @+E, that first performs the applicative
encoding. Leo-III and Satallax have the advantage that they can instantiate
higher-order variables by λ-terms. Thus, some formulas that are provable by
these two systems may be nontheorems for @+E and Ehoh, or they may require
tedious reasoning about λ-lifted functions or SK-style combinators. A simple
example is the conjecture ∃f. ∀x y. f x y ≈ g y x, whose proof requires taking
λx y. g y x as the witness for f .

We also evaluated E, @+E, Ehoh, and Leo-III on first-order benchmarks to
measure the overhead introduced by our extensions, as well as that entailed by

34

First-order Higher-order
TPTP SH32 SH512 TPTP SH32 SH512

E a 598 939 1234
E as 645 950 1311
E b 546 944 1243
@+E a 526 943 1114 395 962 1119
@+E as 567 950 1151 397 965 1155
@+E b 538 942 1228 397 960 1272
Ehoh a 599 938 1233 396 962 1240
Ehoh as 644 949 1310 395 973 1325
Ehoh b 547 944 1243 396 966 1244
Ehoh hb 502 944 1231 393 968 1262
Leo-III 542 951 1126 421 963 1145
Satallax 406 768 790

Fig. 4. Number of proved problems

the applicative encoding. (Satallax is not included because it can only parse THF
problems.) The number of problems each system proved is given in Figure 4. We
considered the E modes auto (a) and autoschedule (as) and the configurations
boa (b) and hoboa (hb). We observe the following:

• Comparing the Ehoh rows with the corresponding E rows, we see that Ehoh’s
overhead is barely noticeable—the difference is at most one problem.

• Ehoh generally outperforms the applicative encoding, on both first-order
and higher-order problems. On Sledgehammer benchmarks, the best Ehoh
mode (autoschedule) clearly outperforms all @+E modes and configurations.
Despite this, there are problems that @+E proves faster than Ehoh, because
the applicative encoding impacts the heuristics in subtle ways.

• Especially on large benchmarks, the E variants are substantially more suc-
cessful than Leo-III and Satallax. This corroborates older experiments by
Sultana, Blanchette, and Paulson [46] involving Leo-II and Satallax. On the
other hand, Leo-III emerges as the winner on the first-order SH32 benchmark
set, presumably thanks to the combination of first-order backends (CVC4, E,
and iProver) it depends on.

• The new hoboa configuration outperforms boa on higher-order problems,
suggesting that it could be worthwhile to re-train auto and autoschedule
based on λfHOL benchmarks and to design further heuristics.

Next to the number of problems proved, the time in which a prover gives an
answer is also an important consideration. Figure 5 compares the average running
times of systems on the problems that all of the applicable systems proved. The
results show that Ehoh incurs little overhead on first-order problems. The raw
evaluation data reveal that it takes Ehoh 3475 s to prove all these problems,
compared with 3351 s for E, corresponding to a 3.7% overhead. We conjectured

35

First-order Higher-order
TPTP SH32 SH512 TPTP SH32 SH512

E a 0.42 0.21 0.66
E as 0.45 0.31 1.20
E b 0.60 0.10 0.60
@+E a 0.39 0.15 0.62 0.06 0.10 0.39
@+E as 0.85 0.15 0.60 0.06 0.10 0.37
@+E b 0.51 0.14 1.00 0.06 0.09 0.72
Ehoh a 0.43 0.25 0.70 0.08 0.08 0.63
Ehoh as 0.46 0.31 1.20 0.23 0.17 1.12
Ehoh b 0.64 0.11 0.64 0.05 0.07 0.47
Ehoh hb 0.93 0.19 1.13 0.05 0.13 0.61
Leo-III 10.18 8.75 27.35 5.09 11.63 35.06
Satallax 2.92 5.87 9.95

Fig. 5. Average running times (s) on the problems proved by all provers

that the native treatment of λfHOL terms, which are roughly half the size of
applicatively encoded terms, would result in a factor-of-2 speed-up of Ehoh over
@+E, but this is not confirmed by the evaluation.

10 Discussion and Related Work

Our working hypothesis is that it should be possible to extend existing first-order
provers to higher-order logic, without slowing them down unduly. Our research
program is two-pronged: On the theoretical side, we are investigating higher-
order extensions of superposition; on the practical side, we are implementing
such extensions in a state-of-the-art prover. The work described in this report
required modifying many parts of the E prover. The invariant that variables are
unapplied and that symbols are always passed the same number of arguments
were entrenched in E’s algorithms and data structures, requiring hundreds of
modifications. Nonetheless, we found the generalization manageable and are now
in a position to add support for λ-terms and higher-order unification.

Most higher-order provers were developed from the ground up. Two exceptions
are Otter-λ by Beeson [7] and Zipperposition by Cruanes [18]. Otter-λ adds λ-
terms and second-order unification to the superposition-based Otter [30]. The
approach is pragmatic, with little emphasis on completeness. Zipperposition is
a superposition-based prover written in OCaml. It was initially designed for
first-order logic but subsequently extended to higher-order logic. Its performance
is a far cry from E’s, but it is easier to modify. It competed at the 2017 edition of
CASC [49] and is used by Bentkamp et al. [8] for experimenting with higher-order
features. Finally, there is noteworthy preliminary work by the developers of
Vampire [12] and of the SMT (satisfiability modulo theories) solvers CVC4 and
veriT [5].

36

Native higher-order reasoning was pioneered by Robinson [37], Andrews [1],
and Huet [23]. Andrews [2] and Benzmüller and Miller [10] provide excellent
surveys. TPS, by Andrews et al. [3], was based on expansion proofs and let
users specify proof outlines. The Leo family of systems, developed by Benzmüller
and his colleagues, is based on resolution and paramodulation. LEO [9] featured
support for extensionality on the calculus level and introduced the cooperative
paradigm to integrate first-order provers. Leo-III [44] expands the cooperation
with SMT (satisfiability modulo theories) solvers and introduces term orders in a
pragmatic, incomplete way. Brown’s Satallax [16] is based on a complete higher-
order tableau calculus, guided by a SAT solver; recent versions also cooperate
with first-order provers. Satallax usually wins in CASC’s higher-order theorem
division [49]. Another competitive prover is Lindblad’s AgsyHOL [27]. It is based
on a focused sequent calculus driven by a generic narrowing engine.

An alternative to all of the above is to reduce higher-order logic to first-order
logic by means of a translation. Robinson [38] outlined this approach decades
before tools such as MizAR [50], Sledgehammer [34], HOLyHammer [24], and
CoqHammer [19] popularized it in proof assistants. In addition to performing an
applicative encoding, such translations must eliminate the λ-expressions [20, 32]
and encode the type information [13]. In practice, on problems with a large
first-order component, translations perform surprisingly well compared with the
existing native provers [46]. Largely thanks to Sledgehammer, Isabelle often came
in close second at CASC, even defeating Satallax in 2012 [48].

By removing the need for the applicative encoding, our work reduces the
translation gap. The encoding buries the λfHOL terms’ heads under layers of
@ symbols, which impacts the heuristics that inspect terms. Terms double in
size, cluttering the data structures, and twice as many subterm positions must
be considered for inferences. Moreover, encoding is incompatible with interpreted
operators, notably for arithmetic. The traditional solution is to introduce proxies
to connect an uninterpreted nullary symbol with its interpreted counterpart(e.g.,
@(@(plus, x), y) ≈ x+ y), but this is clumsy. A further complication is that in
a monomorphic logic, @ is not a single symbol but a type-indexed family of
symbols @τ,υ, which must be correctly introduced and recognized. Finally, the
encoding must be undone in the generated proofs. While it should be possible
to base a higher-order prover on such an encoding, the prospect is aesthetically
and technically unappealing, and performance would likely suffer.

11 Conclusion

Despite considerable progress since the 1970s, higher-order automated reasoning
has not yet assimilated some of the most successful methods for first-order logic
with equality, such as superposition. We presented a graceful extension of a state-
of-the-art first-order theorem prover to a fragment of higher-order logic devoid of
λ-terms. Our work covers both theoretical and practical aspects. Experiments
show promising results on λ-free higher-order problems and very little overhead
for first-order problems, as we would expect from a graceful generalization.

37

The resulting Ehoh prover will form the basis of our work towards strong
higher-order automation. Our aim is to turn it into a prover that excels on proof
obligations emerging from interactive verification; in our experience, these tend
to be large but only mildly higher-order. Our next steps will be to extend E’s
term data structure with λ-expressions and investigate techniques for computing
higher-order unifiers efficiently.

Acknowledgment. We are grateful to the maintainers of StarExec for letting us
use their service. We thank Ahmed Bhayat, Alexander Bentkamp, Daniel El Ouraoui,
Michael Färber, Pascal Fontaine, Predrag Janičić, Robert Lewis, Tomer Libal, Giles
Reger, Hans-Jörg Schurr, Alexander Steen, Mark Summerfield, Dmitriy Traytel, and
the anonymous reviewers for suggesting many improvements to this text. We also want
to thank the other members of the Matryoshka team, including Sophie Tourret and
Uwe Waldmann, as well as Christoph Benzmüller, Andrei Voronkov, Daniel Wand, and
Christoph Weidenbach, for many stimulating discussions.

Vukmirović and Blanchette’s research has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation program (grant agreement No. 713999, Matryoshka). Blanchette has received
funding from the Netherlands Organization for Scientific Research (NWO) under the
Vidi program (project No. 016.Vidi.189.037, Lean Forward). He also benefited from the
NWO Incidental Financial Support scheme.

References

[1] Andrews, P.B.: Resolution in type theory. J. Symb. Log. 36(3), 414–432 (1971)
[2] Andrews, P.B.: Classical type theory. In: Robinson, J.A., Voronkov, A. (eds.)

Handbook of Automated Reasoning, vol. 2, pp. 965–1007. Elsevier and MIT Press
(2001)

[3] Andrews, P.B., Bishop, M., Issar, S., Nesmith, D., Pfenning, F., Xi, H.: TPS: A
theorem-proving system for classical type theory. J. Autom. Reason. 16(3), 321–353
(1996)

[4] Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University
Press (1998)

[5] Barbosa, H., Reynolds, A., Fontaine, P., Ouraoui, D.E., Tinelli, C.: Higher-order
SMT solving (work in progress). In: Dimitrova, R., D’Silva, V. (eds.) SMT 2018
(2018)

[6] Becker, H., Blanchette, J.C., Waldmann, U., Wand, D.: A transfinite Knuth–Bendix
order for lambda-free higher-order terms. In: de Moura, L. (ed.) CADE-26. LNCS,
vol. 10395, pp. 432–453. Springer (2017)

[7] Beeson, M.: Lambda logic. In: Basin, D.A., Rusinowitch, M. (eds.) IJCAR 2004.
LNCS, vol. 3097, pp. 460–474. Springer (2004)

[8] Bentkamp, A., Blanchette, J.C., Cruanes, S., Waldmann, U.: Superposition for
lambda-free higher-order logic. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.)
IJCAR 2018. LNCS, vol. 10900, pp. 28–46. Springer (2018)

[9] Benzmüller, C., Kohlhase, M.: System description: LEO—a higher-order theorem
prover. In: Kirchner, C., Kirchner, H. (eds.) CADE-15. LNCS, vol. 1421, pp.
139–144. Springer (1998)

38

[10] Benzmüller, C., Miller, D.: Automation of higher-order logic. In: Siekmann, J.H.
(ed.) Computational Logic, Handbook of the History of Logic, vol. 9, pp. 215–254.
Elsevier (2014)

[11] Benzmüller, C., Sultana, N., Paulson, L.C., Theiss, F.: The higher-order prover
Leo-II. J. Autom. Reason. 55(4), 389–404 (2015)

[12] Bhayat, A., Reger, G.: Set of support for higher-order reasoning. In: Konev, B.,
Urban, J., Rümmer, P. (eds.) PAAR-2018. CEUR Workshop Proceedings, vol.
2162, pp. 2–16. CEUR-WS.org (2018)

[13] Blanchette, J.C., Böhme, S., Popescu, A., Smallbone, N.: Encoding monomorphic
and polymorphic types. Log. Meth. Comput. Sci. 12(4) (2016)

[14] Blanchette, J.C., Waldmann, U., Wand, D.: A lambda-free higher-order recursive
path order. In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203,
pp. 461–479. Springer (2017)

[15] Böhme, S., Nipkow, T.: Sledgehammer: Judgement Day. In: Giesl, J., Hähnle, R.
(eds.) IJCAR 2010. LNCS, vol. 6173, pp. 107–121. Springer (2010)

[16] Brown, C.E.: Satallax: An automatic higher-order prover. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 111–117. Springer (2012)

[17] Cruanes, S.: Extending Superposition with Integer Arithmetic, Structural Induc-
tion, and Beyond. PhD thesis, École polytechnique (2015), https://who.rocq.
inria.fr/Simon.Cruanes/files/thesis.pdf

[18] Cruanes, S.: Superposition with structural induction. In: Dixon, C., Finger, M.
(eds.) FroCoS 2017. LNCS, vol. 10483, pp. 172–188. Springer (2017)

[19] łLukasz Czajka, Kaliszyk, C.: Hammer for Coq: Automation for dependent type
theory (2018)

[20] Czajka, Ł.: Improving automation in interactive theorem provers by efficient
encoding of lambda-abstractions. In: Avigad, J., Chlipala, A. (eds.) CPP 2016. pp.
49–57. ACM (2016)

[21] Eggers, A., Kruglov, E., Kupferschmid, S., Scheibler, K., Teige, T., Weidenbach, C.:
Superposition modulo non-linear arithmetic. In: Tinelli, C., Sofronie-Stokkermans,
V. (eds.) FroCoS 2011. LNCS, vol. 6989, pp. 119–134. Springer (2011)

[22] Filliâtre, J.-C., Paskevich, A.: Why3—where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer (2013)

[23] Huet, G.P.: A mechanization of type theory. In: Nilsson, N.J. (ed.) IJCAI-73. pp.
139–146. William Kaufmann (1973)

[24] Kaliszyk, C., Urban, J.: HOL(y)Hammer: Online ATP service for HOL Light.
Math. Comput. Sci. 9(1), 5–22 (2015)

[25] Korovin, K., Voronkov, A.: Integrating linear arithmetic into superposition calculus.
In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 223–237.
Springer (2007)

[26] Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer (2013)

[27] Lindblad, F.: A focused sequent calculus for higher-order logic. In: Demri, S., Kapur,
D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 61–75. Springer
(2014)

[28] Löchner, B.: Things to know when implementing KBO. J. Autom. Reason. 36(4),
289–310 (2006)

[29] Löchner, B., Schulz, S.: An evaluation of shared rewriting. In: de Nivelle, H., Schulz,
S. (eds.) IWIL-2001. pp. 33–48. Max-Planck-Institut für Informatik (2001)

[30] McCune, W.: Otter 2.0. In: Stickel, M.E. (ed.) CADE-10. LNCS, vol. 449, pp.
663–664. Springer (1990)

39

https://who.rocq.inria.fr/Simon.Cruanes/files/thesis.pdf
https://who.rocq.inria.fr/Simon.Cruanes/files/thesis.pdf

[31] McCune, W.: Experiments with discrimination-tree indexing and path indexing
for term retrieval. J. Autom. Reason. 9(2), 147–167 (1992)

[32] Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses. J.
Autom. Reason. 40(1), 35–60 (2008)

[33] Miller, D.A.: A compact representation of proofs. Studia Logica 46(4), 347–370
(1987)

[34] Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer,
a practical link between automatic and interactive theorem provers. In: Sutcliffe,
G., Schulz, S., Ternovska, E. (eds.) IWIL-2010. EPiC, vol. 2, pp. 1–11. EasyChair
(2012)

[35] Peltier, N.: A variant of the superposition calculus. Archive of Formal Proofs
(2016), https://www.isa-afp.org/entries/SuperCalc.shtml

[36] Prevosto, V., Waldmann, U.: SPASS+T. In: Sutcliffe, G., Schmidt, R., Schulz, S.
(eds.) ESCoR 2006. CEUR Workshop Proceedings, vol. 192, pp. 18–33. CEUR-
WS.org (2006)

[37] Robinson, J.: Mechanizing higher order logic. In: Meltzer, B., Michie, D. (eds.)
Machine Intelligence, vol. 4, pp. 151–170. Edinburgh University Press (1969)

[38] Robinson, J.: A note on mechanizing higher order logic. In: Meltzer, B., Michie, D.
(eds.) Machine Intelligence, vol. 5, pp. 121–135. Edinburgh University Press (1970)

[39] Schulz, S.: E—a brainiac theorem prover. AI Commun. 15(2-3), 111–126 (2002)
[40] Schulz, S.: Fingerprint indexing for paramodulation and rewriting. In: Gramlich, B.,

Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 477–483. Springer
(2012)

[41] Schulz, S.: Simple and efficient clause subsumption with feature vector indexing.
In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics—
Essays in Memory of William W. McCune. LNCS, vol. 7788, pp. 45–67. Springer
(2013)

[42] Schulz, S.: System description: E 1.8. In: McMillan, K.L., Middeldorp, A., Voronkov,
A. (eds.) LPAR-19. LNCS, vol. 8312, pp. 735–743. Springer (2013)

[43] Schulz, S.: We know (nearly) nothing! but can we learn? In: Reger, G., Traytel, D.
(eds.) ARCADE 2017. EPiC Series in Computing, vol. 51, pp. 29–32. EasyChair
(2017)

[44] Steen, A., Benzmüller, C.: The higher-order prover Leo-III. In: Galmiche, D.,
Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS, vol. 10900, pp. 108–116.
Springer (2018)

[45] Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: A cross-community infrastructure
for logic solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014.
LNCS, vol. 8562, pp. 367–373. Springer (2014)

[46] Sultana, N., Blanchette, J.C., Paulson, L.C.: LEO-II and Satallax on the Sledge-
hammer test bench. J. Applied Logic 11(1), 91–102 (2013)

[47] Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure. From
CNF to TH0, TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017)

[48] Sutcliffe, G.: The 6th IJCAR automated theorem proving system competition—
CASC-J6. AI Comm. 26(2), 211–223 (2013)

[49] Sutcliffe, G.: The CADE-26 automated theorem proving system competition—
CASC-26. AI Commun. 30(6), 419–432 (2017)

[50] Urban, J., Rudnicki, P., Sutcliffe, G.: ATP and presentation service for Mizar
formalizations. J. Autom. Reason. 50(2), 229–241 (2013)

[51] Vukmirović, P.: Implementation of Lambda-Free Higher-Order Superposition. MSc
thesis, Vrije Universiteit Amsterdam (2018), http://matryoshka.gforge.inria.
fr/pubs/vukmirovic_msc_thesis.pdf

40

https://www.isa-afp.org/entries/SuperCalc.shtml
http://matryoshka.gforge.inria.fr/pubs/vukmirovic_msc_thesis.pdf
http://matryoshka.gforge.inria.fr/pubs/vukmirovic_msc_thesis.pdf

[52] Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski,
P.: SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp.
140–145. Springer (2009)

41

	Extending a Brainiac Prover to Lambda-Free Higher-Order Logic(Technical Report)
	1 Introduction
	2 Logic
	3 Types and Terms
	3.1 Types
	3.2 Terms
	3.3 Term Orders

	4 Unification and Matching
	4.1 Unification
	4.2 Matching

	5 Indexing Data Structures
	5.1 Perfect Discrimination Trees
	5.2 Fingerprint Indices
	5.3 Feature Vector Indices

	6 Inference Rules
	6.1 The Generating Rules
	6.2 The Simplifying Rules

	7 Heuristics
	7.1 Term Order Generation
	7.2 Literal Selection
	7.3 Clause Selection
	7.4 Configurations and Modes

	8 Preprocessing
	9 Evaluation
	9.1 Heuristics Tuning
	9.2 Main Evaluation

	10 Discussion and Related Work
	11 Conclusion

