Errata of
 "Superposition with First-Class Booleans and Inprocessing Clausification"

Visa Nummelin, Alexander Bentkamp, Sophie Tourret, Petar Vukmirović

Selection of positive literals

Definition 1 allows selection of positive literals if they are of the form $s \approx \perp$. The completeness theorem does not hold up when using this feature.

Here is where the proof breaks: In case 1.2 of the proof of Lemma 30 of the technical report, the conclusion of the indicated superposition inference is not necessarily smaller than the main premise C. For example, the rewritten subterm of C might be at the topmost position of the left-hand side of a nonmaximal, selected positive literal $u \approx \perp$ in C, and D might contain a literal $u \approx u^{\prime \prime}$ such that $u^{\prime} \succ u^{\prime \prime} \succ \perp$.

Moreover, case 5 in the proof of Lemma 31 of the technical report does not work. $\left.R_{N}^{*}\right|_{\prec C} \not \vDash s \approx \perp$ only implies that s is not reducible to \perp, but does not imply that s is reducible to \mathbf{T}. Also, even if s is reducible to \mathbf{T} by $\left.R_{N}^{*}\right|_{\prec C}$, it does not necessarily follow that it is reducible by R_{C}.

In short, selection of literals of the form $s \approx \perp$ should not be allowed in Definition 1.

Minor Errata in the Technical Report

Page 14-15 The proof of Lemma 17 is wrong. The term $\{x \mapsto u\} s$ is not necessarily structural smaller than t so induction hypothesis does not apply. The proof can be fixed as follows:

Lemma 6.8 Let R be an interpretable rewrite system. Then $\llbracket t \rrbracket_{R}=[t]$ for all $t \in \mathcal{T}_{\mathrm{G}}$.

Proof. By well-founded induction on t using the left-to-right lexicographic order on $(n(t),|t|)$, where $n(t)$ is the number of quantifiers in t and $|t|$ is the size of the term t.

If $t=\mathrm{f}(\bar{s})$, then $\llbracket t \rrbracket_{R}=\mathcal{J}(\mathbf{f})\left(\llbracket \bar{s} \rrbracket_{R}\right) \stackrel{\mathrm{IH}}{=} \mathcal{J}(\mathbf{f})([\bar{s}])=[\mathrm{f}(\bar{s})]=[t]$. The application of the induction hypothesis is justified because for all $i,(n(t),|t|)>\left(n\left(s_{i}\right),\left|s_{i}\right|\right)$.

If $t=\forall x . s$, then we proceed as follows: Let $\mathcal{T}_{\text {QFG }} \subseteq \mathcal{T}_{G}$ be the set of quantifier-free ground terms. We observe that for all ground terms $u \in \mathcal{T}_{G}$, there exists a quantifier-free ground term $u^{\prime} \in \mathcal{T}_{\text {QFG }}$ such that $u \leftrightarrow_{R}^{*} u^{\prime}$. This
follows from (I1) because any quantifier term is of Boolean type. Therefore, we have

$$
\begin{aligned}
\min \left\{\llbracket s \rrbracket_{R}^{\{x \mapsto[u]\}} \mid u \in \mathcal{T}_{\mathrm{G}}\right\} & =\min \left\{\llbracket s \rrbracket_{R}^{\{x \mapsto[u]\}} \mid u \in \mathcal{T}_{\mathrm{QFG}}\right\} \\
& \text { and } \\
\min \left\{[\{x \mapsto u\} s] \mid u \in \mathcal{T}_{\mathrm{G}}\right\} & =\min \left\{[\{x \mapsto u\} s] \mid u \in \mathcal{T}_{\mathrm{QFG}}\right\}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\llbracket t \rrbracket_{R} & =\min \left\{\llbracket s \rrbracket_{R}^{\{x \mapsto[u]\}} \mid u \in \mathcal{T}_{G}\right\} & & \text { by the definition of term denotation } \\
& =\min \left\{\llbracket s \rrbracket_{R}^{\{x \mapsto[u]\}} \mid u \in \mathcal{T}_{\mathrm{QFG}}\right\} & & \text { by the observation above } \\
& =\min \left\{\llbracket\{x \mapsto u\} s \rrbracket_{R} \mid u \in \mathcal{T}_{\mathrm{QFG}}\right\} & & \text { by Lemma } 6 \\
& =\min \left\{[\{x \mapsto u\} s\rfloor \mid u \in \mathcal{T}_{\mathrm{QFG}}\right\} & & \text { by the induction hypothesis } \\
& =\min \left\{[\{x \mapsto u\} s] \mid u \in \mathcal{T}_{G}\right\} & & \text { by the observation above } \\
& =[\forall x . s] & & \text { by (I4) } \\
& =[t] & &
\end{aligned}
$$

The application of the induction hypothesis is justified because $\{x \mapsto u\} s$ contains less quantifiers than t.

If $t=\exists x . s$, we argue analogously.
Page 15-16 The proof of (I1) in part (5) of Lemma 19 is incomplete because (I1) requires us to show that $\mathrm{T} \not \longleftrightarrow \longrightarrow_{R^{*}}^{*} \perp$.

Here is why $\mathbf{T} \not \longleftrightarrow{ }_{R^{*}}^{*} \perp$: For a proof by contradiction, suppose that $\mathbf{T} \longleftrightarrow{ }_{R^{*}}^{*}$ \perp. Since R^{*} is confluent and \mathbf{T} is in normal form, we have $\perp \longrightarrow_{R^{*}}^{*} \mathbf{T}$. By the assumption that the heads of the left-hand sides of rules in R are not logical symbols, we know that there is no rule of the form $\perp \longrightarrow t$ in R. By (A1) no rules in Δ_{R}^{s} have the form $\perp \longrightarrow t$. Thus, R^{*} does not contain rules of the form $\perp \longrightarrow t$, a contradiction.

Page 20 The definition of an inference reducing a counterexample should be as follows: An inference reduces a counterexample C if its main premise is C, its side premises are true in R_{N}^{*}, and its conclusion D is a clause smaller than C and false in R_{N}^{*}. In particular, the conclusion D is not required to be in N, contrary to what the the original formulation suggested.

Page 22 Case 2.2 of the proof of Lemma 30 can be simplified: We do not need to inspect the reduction chain of $s \approx t$. By (I3), $s \approx t \rightarrow_{R_{N}^{*}}^{*} \perp$ implies directly that $R_{N}^{*} \not \vDash s \approx t$.

Acknowledgments We would like to thank Yicheng Qian for discovering these errata and for suggesting fixes for many of them.

